Displaying similar documents to “The strong persistence property and symbolic strong persistence property”

A note on the multiplier ideals of monomial ideals

Cheng Gong, Zhongming Tang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 [ x 1 , ... , x n ] be a monomial ideal and 𝒥 ( 𝔞 c ) the multiplier ideal of 𝔞 with coefficient c . Then 𝒥 ( 𝔞 c ) is also a monomial ideal of [ x 1 , ... , x n ] , and the equality 𝒥 ( 𝔞 c ) = 𝔞 implies that 0 < c < n + 1 . We mainly discuss the problem when 𝒥 ( 𝔞 ) = 𝔞 or 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 for all 0 < ε < 1 . It is proved that if 𝒥 ( 𝔞 ) = 𝔞 then 𝔞 is principal, and if 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 holds for all 0 < ε < 1 then 𝔞 = ( x 1 , ... , x n ) . One global result is also obtained. Let 𝔞 ˜ be the ideal sheaf on n - 1 associated with 𝔞 . Then it is proved that the equality 𝒥 ( 𝔞 ˜ ) = 𝔞 ˜ implies that 𝔞 ˜ is principal.

Semi n -ideals of commutative rings

Ece Yetkin Çelikel, Hani A. Khashan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with identity. A proper ideal I is said to be an n -ideal of R if for a , b R , a b I and a 0 imply b I . We give a new generalization of the concept of n -ideals by defining a proper ideal I of R to be a semi n -ideal if whenever a R is such that a 2 I , then a 0 or a I . We give some examples of semi n -ideal and investigate semi n -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new...

Generalization of the S -Noetherian concept

Abdelamir Dabbabi, Ali Benhissi (2023)

Archivum Mathematicum

Similarity:

Let A be a commutative ring and 𝒮 a multiplicative system of ideals. We say that A is 𝒮 -Noetherian, if for each ideal Q of A , there exist I 𝒮 and a finitely generated ideal F Q such that I Q F . In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.

( δ , 2 ) -primary ideals of a commutative ring

Gülşen Ulucak, Ece Yetkin Çelikel (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with nonzero identity, let ( ) be the set of all ideals of R and δ : ( ) ( ) an expansion of ideals of R defined by I δ ( I ) . We introduce the concept of ( δ , 2 ) -primary ideals in commutative rings. A proper ideal I of R is called a ( δ , 2 ) -primary ideal if whenever a , b R and a b I , then a 2 I or b 2 δ ( I ) . Our purpose is to extend the concept of 2 -ideals to ( δ , 2 ) -primary ideals of commutative rings. Then we investigate the basic properties of ( δ , 2 ) -primary ideals and also discuss the relations among ( δ , 2 ) -primary, δ -primary...

Ideals in big Lipschitz algebras of analytic functions

Thomas Vils Pedersen (2004)

Studia Mathematica

Similarity:

For 0 < γ ≤ 1, let Λ γ be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let J γ ( E , Q ) be the closed ideal in Λ γ consisting of those functions f Λ γ for which (i) f = 0 on E, (ii) | f ( z ) - f ( w ) | = o ( | z - w | γ ) as d(z,E),d(w,E) → 0, (iii) f / Q Λ γ . Also, for a closed ideal I in Λ γ , let E I = z ∈ : f(z) = 0 for every f ∈ I and let Q I be the greatest common divisor of the inner parts of non-zero functions...

On the regularity and defect sequence of monomial and binomial ideals

Keivan Borna, Abolfazl Mohajer (2019)

Czechoslovak Mathematical Journal

Similarity:

When S is a polynomial ring or more generally a standard graded algebra over a field K , with homogeneous maximal ideal 𝔪 , it is known that for an ideal I of S , the regularity of powers of I becomes eventually a linear function, i.e., reg ( I m ) = d m + e for m 0 and some integers d , e . This motivates writing reg ( I m ) = d m + e m for every m 0 . The sequence e m , called the of the ideal I , is the subject of much research and its nature is still widely unexplored. We know that e m is eventually constant. In this article, after proving...

Augmentation quotients for Burnside rings of generalized dihedral groups

Shan Chang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite abelian group of odd order, 𝒟 be its generalized dihedral group, i.e., the semidirect product of C 2 acting on H by inverting elements, where C 2 is the cyclic group of order two. Let Ω ( 𝒟 ) be the Burnside ring of 𝒟 , Δ ( 𝒟 ) be the augmentation ideal of Ω ( 𝒟 ) . Denote by Δ n ( 𝒟 ) and Q n ( 𝒟 ) the n th power of Δ ( 𝒟 ) and the n th consecutive quotient group Δ n ( 𝒟 ) / Δ n + 1 ( 𝒟 ) , respectively. This paper provides an explicit -basis for Δ n ( 𝒟 ) and determines the isomorphism class of Q n ( 𝒟 ) for each positive integer n .

When spectra of lattices of z -ideals are Stone-Čech compactifications

Themba Dube (2017)

Mathematica Bohemica

Similarity:

Let X be a completely regular Hausdorff space and, as usual, let C ( X ) denote the ring of real-valued continuous functions on X . The lattice of z -ideals of C ( X ) has been shown by Martínez and Zenk (2005) to be a frame. We show that the spectrum of this lattice is (homeomorphic to) β X precisely when X is a P -space. This we actually show to be true not only in spaces, but in locales as well. Recall that an ideal of a commutative ring is called a d -ideal if whenever two elements have the same annihilator...

On atomic ideals in some factor rings of C ( X , )

Alireza Olfati (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A nonzero R -module M is atomic if for each two nonzero elements a , b in M , both cyclic submodules R a and R b have nonzero isomorphic submodules. In this article it is shown that for an infinite P -space X , the factor rings C ( X , ) / C F ( X , ) and C c ( X ) / C F ( X ) have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set X , the factor ring X / ( X ) has no atomic ideal. Another result is that for each infinite...

The cleanness of (symbolic) powers of Stanley-Reisner ideals

Somayeh Bandari, Ali Soleyman Jahan (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Δ be a pure simplicial complex on the vertex set [ n ] = { 1 , ... , n } and I Δ its Stanley-Reisner ideal in the polynomial ring S = K [ x 1 , ... , x n ] . We show that Δ is a matroid (complete intersection) if and only if S / I Δ ( m ) ( S / I Δ m ) is clean for all m and this is equivalent to saying that S / I Δ ( m ) ( S / I Δ m , respectively) is Cohen-Macaulay for all m . By this result, we show that there exists a monomial ideal I with (pretty) cleanness property while S / I m or S / I ( m ) is not (pretty) clean for all integer m 3 . If dim ( Δ ) = 1 , we also prove that S / I Δ ( 2 ) ( S / I Δ 2 ) is clean if and only...

Some properties of algebras of real-valued measurable functions

Ali Akbar Estaji, Ahmad Mahmoudi Darghadam (2023)

Archivum Mathematicum

Similarity:

Let M ( X , 𝒜 ) ( M * ( X , 𝒜 ) ) be the f -ring of all (bounded) real-measurable functions on a T -measurable space ( X , 𝒜 ) , let M K ( X , 𝒜 ) be the family of all f M ( X , 𝒜 ) such that coz ( f ) is compact, and let M ( X , 𝒜 ) be all f M ( X , 𝒜 ) that { x X : | f ( x ) | 1 n } is compact for any n . We introduce realcompact subrings of M ( X , 𝒜 ) , we show that M * ( X , 𝒜 ) is a realcompact subring of M ( X , 𝒜 ) , and also M ( X , 𝒜 ) is a realcompact if and only if ( X , 𝒜 ) is a compact measurable space. For every nonzero real Riesz map ϕ : M ( X , 𝒜 ) , we prove that there is an element x 0 X such that ϕ ( f ) = f ( x 0 ) for every f M ( X , 𝒜 ) if ( X , 𝒜 ) is a compact measurable space....

Depth and Stanley depth of the facet ideals of some classes of simplicial complexes

Xiaoqi Wei, Yan Gu (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Δ n , d (resp. Δ n , d ' ) be the simplicial complex and the facet ideal I n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - d + 1 x n ) (resp. J n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - 2 d + 2 k + 1 x n - d + 2 k , x n - d + k + 1 x n x 1 x k ) ). When d 2 k + 1 , we give the exact formulas to compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d t for all t 1 . When d = 2 k , we compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d , and give lower bounds for the depth and Stanley depth of quotient rings S / I n , d t for all t 1 .

Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings

Vincenzo de Filippis (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of characteristic different from 2 and 3, Q r its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n 1 a fixed positive integer. Let α be an automorphism of the ring R . An additive map D : R R is called an α -derivation (or a skew derivation) on R if D ( x y ) = D ( x ) y + α ( x ) D ( y ) for all x , y R . An additive mapping F : R R is called a generalized α -derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F ( x y ) = F ( x ) y + α ( x ) D ( y ) for all x , y R . We prove...