On the completeness of total spaces of horizontally conformal submersions

Mohamed Tahar Kadaoui Abbassi; Ibrahim Lakrini

Communications in Mathematics (2021)

  • Volume: 29, Issue: 3, page 493-504
  • ISSN: 1804-1388

Abstract

top
In this paper, we address the completeness problem of certain classes of Riemannian metrics on vector bundles. We first establish a general result on the completeness of the total space of a vector bundle when the projection is a horizontally conformal submersion with a bound condition on the dilation function, and in particular when it is a Riemannian submersion. This allows us to give completeness results for spherically symmetric metrics on vector bundle manifolds and eventually for the class of Cheeger-Gromoll and generalized Cheeger-Gromoll metrics on vector bundle manifolds. Moreover, we study the completeness of a subclass of g natural metrics on tangent bundles and we extend the results to the case of unit tangent sphere bundles. Our proofs are mainly based on techniques of metric topology and on the Hopf-Rinow theorem.

How to cite

top

Abbassi, Mohamed Tahar Kadaoui, and Lakrini, Ibrahim. "On the completeness of total spaces of horizontally conformal submersions." Communications in Mathematics 29.3 (2021): 493-504. <http://eudml.org/doc/297760>.

@article{Abbassi2021,
abstract = {In this paper, we address the completeness problem of certain classes of Riemannian metrics on vector bundles. We first establish a general result on the completeness of the total space of a vector bundle when the projection is a horizontally conformal submersion with a bound condition on the dilation function, and in particular when it is a Riemannian submersion. This allows us to give completeness results for spherically symmetric metrics on vector bundle manifolds and eventually for the class of Cheeger-Gromoll and generalized Cheeger-Gromoll metrics on vector bundle manifolds. Moreover, we study the completeness of a subclass of $g$natural metrics on tangent bundles and we extend the results to the case of unit tangent sphere bundles. Our proofs are mainly based on techniques of metric topology and on the Hopf-Rinow theorem.},
author = {Abbassi, Mohamed Tahar Kadaoui, Lakrini, Ibrahim},
journal = {Communications in Mathematics},
keywords = {Vector bundle; spherically symmetric metric; complete Riemannian metric; complete metric space; Hopf-Rinow theorem},
language = {eng},
number = {3},
pages = {493-504},
publisher = {University of Ostrava},
title = {On the completeness of total spaces of horizontally conformal submersions},
url = {http://eudml.org/doc/297760},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Abbassi, Mohamed Tahar Kadaoui
AU - Lakrini, Ibrahim
TI - On the completeness of total spaces of horizontally conformal submersions
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 493
EP - 504
AB - In this paper, we address the completeness problem of certain classes of Riemannian metrics on vector bundles. We first establish a general result on the completeness of the total space of a vector bundle when the projection is a horizontally conformal submersion with a bound condition on the dilation function, and in particular when it is a Riemannian submersion. This allows us to give completeness results for spherically symmetric metrics on vector bundle manifolds and eventually for the class of Cheeger-Gromoll and generalized Cheeger-Gromoll metrics on vector bundle manifolds. Moreover, we study the completeness of a subclass of $g$natural metrics on tangent bundles and we extend the results to the case of unit tangent sphere bundles. Our proofs are mainly based on techniques of metric topology and on the Hopf-Rinow theorem.
LA - eng
KW - Vector bundle; spherically symmetric metric; complete Riemannian metric; complete metric space; Hopf-Rinow theorem
UR - http://eudml.org/doc/297760
ER -

References

top
  1. Abbassi, M.T.K., g -natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds, Note. Mat, 28, 1, 2009, 6-35, (2009) MR2640573
  2. Abbassi, M.T.K., Métriques Naturelles Riemanniennes sur le Fibré tangent ¸ une variété Riemannienne, Editions Universitaires Européénnes, Saarbrücken, Germany, 2012, (2012) 
  3. Abbassi, M.T.K, Calvaruso, G., Perrone, D., 10.1093/qmath/hap040, Quart. J. Math, 62, 2011, 259-288, (2011) MR2805204DOI10.1093/qmath/hap040
  4. Abbassi, M.T.K., Sarih, M., On some hereditary properties of Riemannian g -natural metrics on tangent bundles of Riemannian manifolds, Diff. Geom. Appl, 22, 2005, 19-47, (2005) Zbl1068.53016MR2106375
  5. Albuquerque, R., 10.1007/s10455-016-9528-y, Ann. Global Anal. Geom., 51, 2017, 129-154, (2017) MR3612951DOI10.1007/s10455-016-9528-y
  6. Benyounes, M., Loubeau, E., Wood, C.M., 10.3836/tjm/1264170234, Tokyo J. Math, 32, 2, 2009, 287-312, (2009) MR2589947DOI10.3836/tjm/1264170234
  7. Benyounes, M., Loubeau, E., Wood, C.M., 10.1016/j.difgeo.2006.11.010, Differential Geometry and its Applications, 25, 2007, 322-334, (2007) MR2330461DOI10.1016/j.difgeo.2006.11.010
  8. Besse, A.L., Einstein Manifolds, 1987, Springer-Verlag, Berlin, Heidelberg, (1987) Zbl0613.53001
  9. Escobales, R.H., JR., Riemannian submersions with totally geodesic fibers, J. Diff. Geometry, 10, 1975, 253-276, (1975) 
  10. Fuglede, B., 10.5802/aif.691, Ann. Inst. Fourier, 28, 1978, 107-144, (1978) DOI10.5802/aif.691
  11. Gudmundsson, S., 10.1017/S0305004100069358, Math. Proc. Camb. Phil. Soc, 108, 1990, 461-466, (1990) DOI10.1017/S0305004100069358
  12. Gudmundsson, S., The Geometry of Harmonic Morphisms, 1992, Doctoral thesis, (1992) 
  13. Hermann, R., 10.1090/S0002-9939-1960-0112151-4, Proc. Amer. Math. Soc, 11, 1960, 236-242, (1960) DOI10.1090/S0002-9939-1960-0112151-4
  14. Ishihara, T., A Mapping of Riemannian Manifolds which preserves Harmonic Functions, J. Math. Kyoto Univ, 19, 1979, 215-229, (1979) 
  15. Kobayashi, S., Nomizu, K., Foundations of differential geometry Vol.1, 1963, Interscince Publishers, New York and London, (1963) 
  16. Kowalski, O., Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold, J. Reine Angew. Math, 250, 1971, 124-129, (1971) 
  17. Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles-a classification, Bull. Tokyo Gakugei Univ, 40, 4, 1988, 1-29, (1988) 
  18. Kolár, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, 1993, Springer-Verlag, Berlin, Heidelberg, (1993) 
  19. Krupka, D., Janyska, J., Lectures on differential invariants, 1990, Univ. of Brno, (1990) 
  20. Musso, E., Tricerri, F., 10.1007/BF01761461, Ann. Math. Pura Appl, 150, 4, 1988, 1-20, (1988) Zbl0658.53045DOI10.1007/BF01761461
  21. Nagano, T., On fibred Riemannian manifolds, Sci. Papers College Gen. Ed. Univ. Tokyo, 10, 1960, 17-27, (1960) 
  22. O'Neill, B., 10.1307/mmj/1028999604, Mich. Math. J, 13, 1966, 459-469, (1966) DOI10.1307/mmj/1028999604
  23. O'Neill, B., Submersions and geodesics, Duke Math. J, 34, 1967, 459-469, (1967) 
  24. Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds I, J. Tohôku Math, 10, 1958, 338-354, (1958) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.