Displaying similar documents to “On the completeness of total spaces of horizontally conformal submersions”

Invariance of g -natural metrics on linear frame bundles

Oldřich Kowalski, Masami Sekizawa (2008)

Archivum Mathematicum

Similarity:

In this paper we prove that each g -natural metric on a linear frame bundle L M over a Riemannian manifold ( M , g ) is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define g -natural metrics on the orthonormal frame bundle O M and we prove the same invariance result as above for O M . Hence we see that, over a space ( M , g ) of constant sectional curvature, the bundle O M with an arbitrary g -natural metric G ˜ is locally homogeneous.

On natural metrics on tangent bundles of Riemannian manifolds

Mohamed Tahar Kadaoui Abbassi, Maâti Sarih (2005)

Archivum Mathematicum

Similarity:

There is a class of metrics on the tangent bundle T M of a Riemannian manifold ( M , g ) (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric g [Kow-Sek1]. We call them “ g -natural metrics" on T M . To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on T M from some quadratic forms on O M × m to find metrics (not necessary...

On g -natural conformal vector fields on unit tangent bundles

Mohamed Tahar Kadaoui Abbassi, Noura Amri (2021)

Czechoslovak Mathematical Journal

Similarity:

We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian g -natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz M. Mikulski (2015)

Annales UMCS, Mathematica

Similarity:

If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian...

The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Mariusz Plaszczyk (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending...

On the geometry of frame bundles

Kamil Niedziałomski (2012)

Archivum Mathematicum

Similarity:

Let ( M , g ) be a Riemannian manifold, L ( M ) its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle T M . We compute the Levi–Civita connection and curvatures of these metrics.