On the radius of spatial analyticity for the higher order nonlinear dispersive equation
Aissa Boukarou; Kaddour Guerbati; Khaled Zennir
Mathematica Bohemica (2022)
- Volume: 147, Issue: 1, page 19-32
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBoukarou, Aissa, Guerbati, Kaddour, and Zennir, Khaled. "On the radius of spatial analyticity for the higher order nonlinear dispersive equation." Mathematica Bohemica 147.1 (2022): 19-32. <http://eudml.org/doc/297802>.
@article{Boukarou2022,
abstract = {In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_\{0\}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).},
author = {Boukarou, Aissa, Guerbati, Kaddour, Zennir, Khaled},
journal = {Mathematica Bohemica},
keywords = {higher order nonlinear dispersive equation; radius of spatial analyticity; approximate conservation law},
language = {eng},
number = {1},
pages = {19-32},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the radius of spatial analyticity for the higher order nonlinear dispersive equation},
url = {http://eudml.org/doc/297802},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Boukarou, Aissa
AU - Guerbati, Kaddour
AU - Zennir, Khaled
TI - On the radius of spatial analyticity for the higher order nonlinear dispersive equation
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 19
EP - 32
AB - In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_{0}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).
LA - eng
KW - higher order nonlinear dispersive equation; radius of spatial analyticity; approximate conservation law
UR - http://eudml.org/doc/297802
ER -
References
top- Bona, J. L., Grujić, Z., Kalisch, H., 10.1016/j.anihpc.2004.12.004, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 783-797. (2005) Zbl1095.35039MR2172859DOI10.1016/j.anihpc.2004.12.004
- Boukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., Alkhalaf, S., 10.3390/math8050809, Mathematics 8 (2020), Article ID 809, 16 pages. (2020) DOI10.3390/math8050809
- Boukarou, A., Zennir, K., Guerbati, K., Georgiev, S. G., 10.1007/s12215-020-00504-7, Rend. Circ. Mat. Palermo (2) 70 (2021), 349-364. (2021) Zbl1462.35139MR4234317DOI10.1007/s12215-020-00504-7
- Boukarou, A., Zennir, K., Guerbati, K., Svetlin, G. G., 10.1007/s11565-020-00340-8, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 255-272. (2020) MR4156193DOI10.1007/s11565-020-00340-8
- Colliander, J. E., Keel, M., Staffilani, G., Takaoka, H., Tao, T., 10.1016/S0022-1236(03)00218-0, J. Funct. Anal. 211 (2004), 173-218. (2004) Zbl1062.35109MR2054622DOI10.1016/S0022-1236(03)00218-0
- Grujić, Z., Kalisch, H., Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differ. Integral Equ. 15 (2002), 1325-1334. (2002) Zbl1031.35124MR1920689
- Himonas, A. A., Kalisch, H., Selberg, S., 10.1016/j.nonrwa.2017.04.003, Nonlinear Anal., Real World Appl. 38 (2017), 35-48. (2017) Zbl1379.35278MR3670696DOI10.1016/j.nonrwa.2017.04.003
- Jones, K. L., He, X., Chen, Y., 10.1155/S0161171200004336, Int. J. Math. Math. Sci. 24 (2000), 371-377. (2000) Zbl0961.35143MR1780966DOI10.1155/S0161171200004336
- Katznelson, Y., 10.1017/CBO9781139165372, Dover Books on Advanced Mathematics. Dover Publications, New York (1976). (1976) Zbl0352.43001MR0422992DOI10.1017/CBO9781139165372
- Petronilho, G., Silva, P. L. da, 10.1002/mana.201800394, Math. Nachr. 292 (2019), 2032-2047. (2019) Zbl1427.35220MR4009345DOI10.1002/mana.201800394
- Selberg, S., Silva, D. O. da, 10.1007/s00023-016-0498-1, Ann. Henri Poincaré 18 (2017), 1009-1023. (2017) Zbl1366.35161MR3611022DOI10.1007/s00023-016-0498-1
- Selberg, S., Tesfahun, A., 10.1016/j.jde.2015.06.007, J. Differ. Equations 259 (2015), 4732-4744. (2015) Zbl1321.35179MR3373420DOI10.1016/j.jde.2015.06.007
- Selberg, S., Tesfahun, A., 10.1007/s00023-017-0605-y, Ann. Henri Poincaré 18 (2017), 3553-3564. (2017) Zbl1379.35280MR3719502DOI10.1007/s00023-017-0605-y
- Tao, T., 10.1090/cbms/106, CBMS Regional Conference Series in Mathematics 106. AMS, Providence (2006). (2006) Zbl1106.35001MR2233925DOI10.1090/cbms/106
- Zhang, Z., Liu, Z., Sun, M., Li, S., 10.1007/s10884-018-9669-8, J. Dyn. Differ. Equations 31 (2019), 419-433. (2019) Zbl1421.35043MR3935149DOI10.1007/s10884-018-9669-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.