On the radius of spatial analyticity for the higher order nonlinear dispersive equation

Aissa Boukarou; Kaddour Guerbati; Khaled Zennir

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 19-32
  • ISSN: 0862-7959

Abstract

top
In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data u 0 . The analytic initial data can be extended as holomorphic functions in a strip around the x -axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).

How to cite

top

Boukarou, Aissa, Guerbati, Kaddour, and Zennir, Khaled. "On the radius of spatial analyticity for the higher order nonlinear dispersive equation." Mathematica Bohemica 147.1 (2022): 19-32. <http://eudml.org/doc/297802>.

@article{Boukarou2022,
abstract = {In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_\{0\}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).},
author = {Boukarou, Aissa, Guerbati, Kaddour, Zennir, Khaled},
journal = {Mathematica Bohemica},
keywords = {higher order nonlinear dispersive equation; radius of spatial analyticity; approximate conservation law},
language = {eng},
number = {1},
pages = {19-32},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the radius of spatial analyticity for the higher order nonlinear dispersive equation},
url = {http://eudml.org/doc/297802},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Boukarou, Aissa
AU - Guerbati, Kaddour
AU - Zennir, Khaled
TI - On the radius of spatial analyticity for the higher order nonlinear dispersive equation
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 19
EP - 32
AB - In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_{0}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).
LA - eng
KW - higher order nonlinear dispersive equation; radius of spatial analyticity; approximate conservation law
UR - http://eudml.org/doc/297802
ER -

References

top
  1. Bona, J. L., Grujić, Z., Kalisch, H., 10.1016/j.anihpc.2004.12.004, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 783-797. (2005) Zbl1095.35039MR2172859DOI10.1016/j.anihpc.2004.12.004
  2. Boukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., Alkhalaf, S., 10.3390/math8050809, Mathematics 8 (2020), Article ID 809, 16 pages. (2020) DOI10.3390/math8050809
  3. Boukarou, A., Zennir, K., Guerbati, K., Georgiev, S. G., 10.1007/s12215-020-00504-7, Rend. Circ. Mat. Palermo (2) 70 (2021), 349-364. (2021) Zbl1462.35139MR4234317DOI10.1007/s12215-020-00504-7
  4. Boukarou, A., Zennir, K., Guerbati, K., Svetlin, G. G., 10.1007/s11565-020-00340-8, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 255-272. (2020) MR4156193DOI10.1007/s11565-020-00340-8
  5. Colliander, J. E., Keel, M., Staffilani, G., Takaoka, H., Tao, T., 10.1016/S0022-1236(03)00218-0, J. Funct. Anal. 211 (2004), 173-218. (2004) Zbl1062.35109MR2054622DOI10.1016/S0022-1236(03)00218-0
  6. Grujić, Z., Kalisch, H., Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differ. Integral Equ. 15 (2002), 1325-1334. (2002) Zbl1031.35124MR1920689
  7. Himonas, A. A., Kalisch, H., Selberg, S., 10.1016/j.nonrwa.2017.04.003, Nonlinear Anal., Real World Appl. 38 (2017), 35-48. (2017) Zbl1379.35278MR3670696DOI10.1016/j.nonrwa.2017.04.003
  8. Jones, K. L., He, X., Chen, Y., 10.1155/S0161171200004336, Int. J. Math. Math. Sci. 24 (2000), 371-377. (2000) Zbl0961.35143MR1780966DOI10.1155/S0161171200004336
  9. Katznelson, Y., 10.1017/CBO9781139165372, Dover Books on Advanced Mathematics. Dover Publications, New York (1976). (1976) Zbl0352.43001MR0422992DOI10.1017/CBO9781139165372
  10. Petronilho, G., Silva, P. L. da, 10.1002/mana.201800394, Math. Nachr. 292 (2019), 2032-2047. (2019) Zbl1427.35220MR4009345DOI10.1002/mana.201800394
  11. Selberg, S., Silva, D. O. da, 10.1007/s00023-016-0498-1, Ann. Henri Poincaré 18 (2017), 1009-1023. (2017) Zbl1366.35161MR3611022DOI10.1007/s00023-016-0498-1
  12. Selberg, S., Tesfahun, A., 10.1016/j.jde.2015.06.007, J. Differ. Equations 259 (2015), 4732-4744. (2015) Zbl1321.35179MR3373420DOI10.1016/j.jde.2015.06.007
  13. Selberg, S., Tesfahun, A., 10.1007/s00023-017-0605-y, Ann. Henri Poincaré 18 (2017), 3553-3564. (2017) Zbl1379.35280MR3719502DOI10.1007/s00023-017-0605-y
  14. Tao, T., 10.1090/cbms/106, CBMS Regional Conference Series in Mathematics 106. AMS, Providence (2006). (2006) Zbl1106.35001MR2233925DOI10.1090/cbms/106
  15. Zhang, Z., Liu, Z., Sun, M., Li, S., 10.1007/s10884-018-9669-8, J. Dyn. Differ. Equations 31 (2019), 419-433. (2019) Zbl1421.35043MR3935149DOI10.1007/s10884-018-9669-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.