Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation

Jerry L. Bona; Zoran Grujić; Henrik Kalisch

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 6, page 783-797
  • ISSN: 0294-1449

How to cite

top

Bona, Jerry L., Grujić, Zoran, and Kalisch, Henrik. "Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation." Annales de l'I.H.P. Analyse non linéaire 22.6 (2005): 783-797. <http://eudml.org/doc/78678>.

@article{Bona2005,
author = {Bona, Jerry L., Grujić, Zoran, Kalisch, Henrik},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Korteweg-de Vries equation; complex-valued solutions; strip of analyticity},
language = {eng},
number = {6},
pages = {783-797},
publisher = {Elsevier},
title = {Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation},
url = {http://eudml.org/doc/78678},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Bona, Jerry L.
AU - Grujić, Zoran
AU - Kalisch, Henrik
TI - Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 6
SP - 783
EP - 797
LA - eng
KW - Korteweg-de Vries equation; complex-valued solutions; strip of analyticity
UR - http://eudml.org/doc/78678
ER -

References

top
  1. [1] Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R., Conservative high-order numerical schemes for the generalized Korteweg–de Vries equation, Philos. Trans. Roy. Soc. London Ser. A351 (1995) 107-164. Zbl0824.65095MR1336983
  2. [2] Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R., Numerical simulation of singular solutions of the generalized Korteweg–de Vries equation, in: Dias F., Ghidaglia J.-M., Saut J.-C. (Eds.), Contemp. Math., vol. 200, Amer. Math. Soc., Providence, RI, 1996, pp. 17-29. Zbl0860.35112MR1410497
  3. [3] Bona J.L., Grujić Z., Spatial analyticity for nonlinear waves, Math. Models Methods Appl. Sci.13 (2003) 1-15. Zbl1137.35418MR1977630
  4. [4] Bona J.L., Weissler F.B., Similarity solutions of the generalized Korteweg–de Vries equation, Math. Proc. Cambridge Philos. Soc.127 (1999) 323-351. Zbl0939.35164MR1705463
  5. [5] Bona J.L., Weissler F.B., Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations, Indiana Univ. Math. J.50 (2001) 759-782. Zbl1330.35036MR1871389
  6. [6] Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal.3 (1993) 107-156, 209–262. Zbl0787.35098MR1215780
  7. [7] de Bouard A., Hayashi N., Kato K., Gevrey regularizing effect for the (generalized) Korteweg–de Vries equation and nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1995) 673-715. Zbl0843.35098MR1360541
  8. [8] Foias C., Temam R., Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal.87 (1989) 359-369. Zbl0702.35203MR1026858
  9. [9] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy problem for the Zakharov system, J. Funct. Anal.151 (1997) 384-436. Zbl0894.35108MR1491547
  10. [10] Grujić Z., Kalisch H., Local well-posedness of the generalized Korteweg–de Vries equation in spaces of analytic functions, Differential Integral Equations15 (2002) 1325-1334. Zbl1031.35124MR1920689
  11. [11] Hayashi N., Analyticity of solutions of the Korteweg–de Vries equation, SIAM J. Math. Anal.22 (1991) 1738-1743. Zbl0742.35056MR1129407
  12. [12] Hayashi N., Solutions of the (generalized) Korteweg–de Vries equation in the Bergman and Szegö spaces on a sector, Duke Math. J.62 (1991) 575-591. Zbl0729.35119MR1104808
  13. [13] Kato T., Quasilinear equations of evolution with applications to partial differential equations, in: Lecture Notes in Math., vol. 448, Springer-Verlag, 1975, pp. 25-70. Zbl0315.35077MR407477
  14. [14] Kato T., On the Korteweg–deVries equation, Manuscripta Math.28 (1979) 89-99. Zbl0415.35070MR535697
  15. [15] Kato T., Masuda K., Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 455-467. Zbl0622.35066MR870865
  16. [16] Kato K., Ogawa T., Analyticity and smoothing effect for the Korteweg–de Vries equation with a single point singularity, Math. Ann.316 (2000) 577-608. Zbl0956.35115MR1752786
  17. [17] Kenig C.E., Ponce G., Vega L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J.40 (1991) 33-69. Zbl0738.35022MR1101221
  18. [18] Kenig C.E., Ponce G., Vega L., On the Cauchy problem for the Korteweg–deVries equation in Sobolev spaces of negative indices, Duke Math. J.71 (1993) 1-20. Zbl0787.35090MR1230283
  19. [19] Martel Y., Merle F., Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation, J. Amer. Math. Soc.15 (2002) 617-664. Zbl0996.35064MR1896235
  20. [20] Staffilani G., On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J.86 (1997) 109-142. Zbl0874.35114MR1427847

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.