Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation
Jerry L. Bona; Zoran Grujić; Henrik Kalisch
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 6, page 783-797
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBona, Jerry L., Grujić, Zoran, and Kalisch, Henrik. "Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation." Annales de l'I.H.P. Analyse non linéaire 22.6 (2005): 783-797. <http://eudml.org/doc/78678>.
@article{Bona2005,
author = {Bona, Jerry L., Grujić, Zoran, Kalisch, Henrik},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Korteweg-de Vries equation; complex-valued solutions; strip of analyticity},
language = {eng},
number = {6},
pages = {783-797},
publisher = {Elsevier},
title = {Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation},
url = {http://eudml.org/doc/78678},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Bona, Jerry L.
AU - Grujić, Zoran
AU - Kalisch, Henrik
TI - Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 6
SP - 783
EP - 797
LA - eng
KW - Korteweg-de Vries equation; complex-valued solutions; strip of analyticity
UR - http://eudml.org/doc/78678
ER -
References
top- [1] Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R., Conservative high-order numerical schemes for the generalized Korteweg–de Vries equation, Philos. Trans. Roy. Soc. London Ser. A351 (1995) 107-164. Zbl0824.65095MR1336983
- [2] Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R., Numerical simulation of singular solutions of the generalized Korteweg–de Vries equation, in: Dias F., Ghidaglia J.-M., Saut J.-C. (Eds.), Contemp. Math., vol. 200, Amer. Math. Soc., Providence, RI, 1996, pp. 17-29. Zbl0860.35112MR1410497
- [3] Bona J.L., Grujić Z., Spatial analyticity for nonlinear waves, Math. Models Methods Appl. Sci.13 (2003) 1-15. Zbl1137.35418MR1977630
- [4] Bona J.L., Weissler F.B., Similarity solutions of the generalized Korteweg–de Vries equation, Math. Proc. Cambridge Philos. Soc.127 (1999) 323-351. Zbl0939.35164MR1705463
- [5] Bona J.L., Weissler F.B., Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations, Indiana Univ. Math. J.50 (2001) 759-782. Zbl1330.35036MR1871389
- [6] Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal.3 (1993) 107-156, 209–262. Zbl0787.35098MR1215780
- [7] de Bouard A., Hayashi N., Kato K., Gevrey regularizing effect for the (generalized) Korteweg–de Vries equation and nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1995) 673-715. Zbl0843.35098MR1360541
- [8] Foias C., Temam R., Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal.87 (1989) 359-369. Zbl0702.35203MR1026858
- [9] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy problem for the Zakharov system, J. Funct. Anal.151 (1997) 384-436. Zbl0894.35108MR1491547
- [10] Grujić Z., Kalisch H., Local well-posedness of the generalized Korteweg–de Vries equation in spaces of analytic functions, Differential Integral Equations15 (2002) 1325-1334. Zbl1031.35124MR1920689
- [11] Hayashi N., Analyticity of solutions of the Korteweg–de Vries equation, SIAM J. Math. Anal.22 (1991) 1738-1743. Zbl0742.35056MR1129407
- [12] Hayashi N., Solutions of the (generalized) Korteweg–de Vries equation in the Bergman and Szegö spaces on a sector, Duke Math. J.62 (1991) 575-591. Zbl0729.35119MR1104808
- [13] Kato T., Quasilinear equations of evolution with applications to partial differential equations, in: Lecture Notes in Math., vol. 448, Springer-Verlag, 1975, pp. 25-70. Zbl0315.35077MR407477
- [14] Kato T., On the Korteweg–deVries equation, Manuscripta Math.28 (1979) 89-99. Zbl0415.35070MR535697
- [15] Kato T., Masuda K., Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 455-467. Zbl0622.35066MR870865
- [16] Kato K., Ogawa T., Analyticity and smoothing effect for the Korteweg–de Vries equation with a single point singularity, Math. Ann.316 (2000) 577-608. Zbl0956.35115MR1752786
- [17] Kenig C.E., Ponce G., Vega L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J.40 (1991) 33-69. Zbl0738.35022MR1101221
- [18] Kenig C.E., Ponce G., Vega L., On the Cauchy problem for the Korteweg–deVries equation in Sobolev spaces of negative indices, Duke Math. J.71 (1993) 1-20. Zbl0787.35090MR1230283
- [19] Martel Y., Merle F., Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation, J. Amer. Math. Soc.15 (2002) 617-664. Zbl0996.35064MR1896235
- [20] Staffilani G., On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J.86 (1997) 109-142. Zbl0874.35114MR1427847
Citations in EuDML Documents
top- Thomas Kappeler, Jürgen Pöschel, On the periodic KdV equation in weighted Sobolev spaces
- Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, On the radius of spatial analyticity for the higher order nonlinear dispersive equation
- Henrik Kalisch, Xavier Raynaud, On the rate of convergence of a collocation projection of the KdV equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.