Inequalities for Taylor series involving the divisor function
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 331-348
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAlzer, Horst, and Kwong, Man Kam. "Inequalities for Taylor series involving the divisor function." Czechoslovak Mathematical Journal 72.2 (2022): 331-348. <http://eudml.org/doc/298318>.
@article{Alzer2022,
abstract = {Let \[ T(q)=\sum \_\{k=1\}^\infty d(k) q^k, \quad |q|<1, \]
where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that \[ H(q) = T(q)- \frac\{\log (1-q)\}\{\log (q)\} \]
is strictly increasing on $ (0,1)$, while \[ F(q) = \frac\{1-q\}\{q\} H(q) \]
is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality \[ \alpha \frac\{q\}\{1-q\}+\frac\{\log (1-q)\}\{\log (q)\} < T(q)< \beta \frac\{q\}\{1-q\}+\frac\{\log (1-q)\}\{\log (q)\}, \quad 0<q<1, \]
holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac\{1\}\{2\}$ and $\beta =1$.},
author = {Alzer, Horst, Kwong, Man Kam},
journal = {Czechoslovak Mathematical Journal},
keywords = {divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler’s constant},
language = {eng},
number = {2},
pages = {331-348},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inequalities for Taylor series involving the divisor function},
url = {http://eudml.org/doc/298318},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Alzer, Horst
AU - Kwong, Man Kam
TI - Inequalities for Taylor series involving the divisor function
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 331
EP - 348
AB - Let \[ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|<1, \]
where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that \[ H(q) = T(q)- \frac{\log (1-q)}{\log (q)} \]
is strictly increasing on $ (0,1)$, while \[ F(q) = \frac{1-q}{q} H(q) \]
is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality \[ \alpha \frac{q}{1-q}+\frac{\log (1-q)}{\log (q)} < T(q)< \beta \frac{q}{1-q}+\frac{\log (1-q)}{\log (q)}, \quad 0<q<1, \]
holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac{1}{2}$ and $\beta =1$.
LA - eng
KW - divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler’s constant
UR - http://eudml.org/doc/298318
ER -
References
top- Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
- Askey, R., 10.1080/00036817808839221, Appl. Anal. 8 (1978), 123-141. (1978) Zbl0398.33001MR0523950DOI10.1080/00036817808839221
- Baxley, J. V., 10.2307/2691241, Math. Mag. 65 (1992), 302-313. (1992) Zbl0780.40001MR1191273DOI10.2307/2691241
- Beckenbach, E. F., Bellman, R., 10.1007/978-3-642-64971-4, Ergebnisse der Mathematik und ihrer Grenzgebiete 30. Springer, Berlin (1983). (1983) Zbl0513.26003MR0192009DOI10.1007/978-3-642-64971-4
- Clausen, T., 10.1515/crll.1828.3.92, J. Reine Angew. Math. 3 (1828), 92-95 German. (1828) MR1577683DOI10.1515/crll.1828.3.92
- Knopp, K., 10.1007/978-3-642-49655-4, Die Grundlehren der mathematischen Wissenschaften 2. Springer, Berlin (1964), German. (1964) Zbl0124.28302MR0183997DOI10.1007/978-3-642-49655-4
- Krattenthaler, C., Srivastava, H. M., 10.1016/0898-1221(96)00114-9, Comput. Math. Appl. 32 (1996), 73-91. (1996) Zbl0855.33012MR1398550DOI10.1016/0898-1221(96)00114-9
- Landau, E., Sur la série des inverses des nombres de Fibonacci, Bull. Soc. Math. Fr. 27 (1899), 298-300 French 9999JFM99999 30.0248.02. (1899)
- Merca, M., 10.1016/j.jnt.2014.10.009, J. Number Theory 149 (2015), 57-69. (2015) Zbl1371.11140MR3296001DOI10.1016/j.jnt.2014.10.009
- Merca, M., 10.1016/j.jnt.2015.08.014, J. Number Theory 160 (2016), 60-75. (2016) Zbl1396.11123MR3425199DOI10.1016/j.jnt.2015.08.014
- Mitrinović, D. S., Sándor, J., Crstici, B., 10.1007/1-4020-3658-2, Mathematics and its Applications (Dordrecht) 351. Kluwer, Dordrecht (1995). (1995) Zbl0862.11001MR1374329DOI10.1007/1-4020-3658-2
- Pólya, G., Szegő, G., 10.1007/978-3-662-00061-8, Springer, Berlin (1971), German. (1971) Zbl0219.00003MR0344041DOI10.1007/978-3-662-00061-8
- Salem, A., 10.1016/j.jat.2012.03.014, J. Approx. Theory 164 (2012), 971-980. (2012) Zbl1250.33005MR2922625DOI10.1016/j.jat.2012.03.014
- Salem, A., 10.1216/rmj-2016-46-5-1665, Rocky Mt. J. Math. 46 (2016), 1665-1677. (2016) Zbl1354.30028MR3580805DOI10.1216/rmj-2016-46-5-1665
- Salem, A., 10.7153/mia-2020-23-69, Math. Inequal. Appl. 23 (2020), 855-872. (2020) Zbl1453.33011MR4128957DOI10.7153/mia-2020-23-69
- Salem, A., Alzahrani, F., 10.7153/jmi-2019-13-03, J. Math. Inequal. 13 (2019), 37-52. (2019) Zbl1416.33023MR3928268DOI10.7153/jmi-2019-13-03
- Uchimura, K., 10.1016/0097-3165(81)90009-1, J. Comb. Theory, Ser. A 31 (1981), 131-135. (1981) Zbl0473.05006MR0629588DOI10.1016/0097-3165(81)90009-1
- Waerden, B. L. van der, 10.1007/978-3-642-85527-6, Heidelberger Taschenbücher 12. Springer, Berlin (1971), German. (1971) Zbl0221.12001MR0069787DOI10.1007/978-3-642-85527-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.