Inequalities for Taylor series involving the divisor function

Horst Alzer; Man Kam Kwong

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 331-348
  • ISSN: 0011-4642

Abstract

top
Let T ( q ) = k = 1 d ( k ) q k , | q | < 1 , where d ( k ) denotes the number of positive divisors of the natural number k . We present monotonicity properties of functions defined in terms of T . More specifically, we prove that H ( q ) = T ( q ) - log ( 1 - q ) log ( q ) is strictly increasing on ( 0 , 1 ) , while F ( q ) = 1 - q q H ( q ) is strictly decreasing on ( 0 , 1 ) . These results are then applied to obtain various inequalities, one of which states that the double inequality α q 1 - q + log ( 1 - q ) log ( q ) < T ( q ) < β q 1 - q + log ( 1 - q ) log ( q ) , 0 < q < 1 , holds with the best possible constant factors α = γ and β = 1 . Here, γ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities with α = 1 2 and β = 1 .

How to cite

top

Alzer, Horst, and Kwong, Man Kam. "Inequalities for Taylor series involving the divisor function." Czechoslovak Mathematical Journal 72.2 (2022): 331-348. <http://eudml.org/doc/298318>.

@article{Alzer2022,
abstract = {Let \[ T(q)=\sum \_\{k=1\}^\infty d(k) q^k, \quad |q|<1, \] where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that \[ H(q) = T(q)- \frac\{\log (1-q)\}\{\log (q)\} \] is strictly increasing on $ (0,1)$, while \[ F(q) = \frac\{1-q\}\{q\} H(q) \] is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality \[ \alpha \frac\{q\}\{1-q\}+\frac\{\log (1-q)\}\{\log (q)\} < T(q)< \beta \frac\{q\}\{1-q\}+\frac\{\log (1-q)\}\{\log (q)\}, \quad 0<q<1, \] holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac\{1\}\{2\}$ and $\beta =1$.},
author = {Alzer, Horst, Kwong, Man Kam},
journal = {Czechoslovak Mathematical Journal},
keywords = {divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler’s constant},
language = {eng},
number = {2},
pages = {331-348},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inequalities for Taylor series involving the divisor function},
url = {http://eudml.org/doc/298318},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Alzer, Horst
AU - Kwong, Man Kam
TI - Inequalities for Taylor series involving the divisor function
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 331
EP - 348
AB - Let \[ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|<1, \] where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that \[ H(q) = T(q)- \frac{\log (1-q)}{\log (q)} \] is strictly increasing on $ (0,1)$, while \[ F(q) = \frac{1-q}{q} H(q) \] is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality \[ \alpha \frac{q}{1-q}+\frac{\log (1-q)}{\log (q)} < T(q)< \beta \frac{q}{1-q}+\frac{\log (1-q)}{\log (q)}, \quad 0<q<1, \] holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac{1}{2}$ and $\beta =1$.
LA - eng
KW - divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler’s constant
UR - http://eudml.org/doc/298318
ER -

References

top
  1. Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
  2. Askey, R., 10.1080/00036817808839221, Appl. Anal. 8 (1978), 123-141. (1978) Zbl0398.33001MR0523950DOI10.1080/00036817808839221
  3. Baxley, J. V., 10.2307/2691241, Math. Mag. 65 (1992), 302-313. (1992) Zbl0780.40001MR1191273DOI10.2307/2691241
  4. Beckenbach, E. F., Bellman, R., 10.1007/978-3-642-64971-4, Ergebnisse der Mathematik und ihrer Grenzgebiete 30. Springer, Berlin (1983). (1983) Zbl0513.26003MR0192009DOI10.1007/978-3-642-64971-4
  5. Clausen, T., 10.1515/crll.1828.3.92, J. Reine Angew. Math. 3 (1828), 92-95 German. (1828) MR1577683DOI10.1515/crll.1828.3.92
  6. Knopp, K., 10.1007/978-3-642-49655-4, Die Grundlehren der mathematischen Wissenschaften 2. Springer, Berlin (1964), German. (1964) Zbl0124.28302MR0183997DOI10.1007/978-3-642-49655-4
  7. Krattenthaler, C., Srivastava, H. M., 10.1016/0898-1221(96)00114-9, Comput. Math. Appl. 32 (1996), 73-91. (1996) Zbl0855.33012MR1398550DOI10.1016/0898-1221(96)00114-9
  8. Landau, E., Sur la série des inverses des nombres de Fibonacci, Bull. Soc. Math. Fr. 27 (1899), 298-300 French 9999JFM99999 30.0248.02. (1899) 
  9. Merca, M., 10.1016/j.jnt.2014.10.009, J. Number Theory 149 (2015), 57-69. (2015) Zbl1371.11140MR3296001DOI10.1016/j.jnt.2014.10.009
  10. Merca, M., 10.1016/j.jnt.2015.08.014, J. Number Theory 160 (2016), 60-75. (2016) Zbl1396.11123MR3425199DOI10.1016/j.jnt.2015.08.014
  11. Mitrinović, D. S., Sándor, J., Crstici, B., 10.1007/1-4020-3658-2, Mathematics and its Applications (Dordrecht) 351. Kluwer, Dordrecht (1995). (1995) Zbl0862.11001MR1374329DOI10.1007/1-4020-3658-2
  12. Pólya, G., Szegő, G., 10.1007/978-3-662-00061-8, Springer, Berlin (1971), German. (1971) Zbl0219.00003MR0344041DOI10.1007/978-3-662-00061-8
  13. Salem, A., 10.1016/j.jat.2012.03.014, J. Approx. Theory 164 (2012), 971-980. (2012) Zbl1250.33005MR2922625DOI10.1016/j.jat.2012.03.014
  14. Salem, A., 10.1216/rmj-2016-46-5-1665, Rocky Mt. J. Math. 46 (2016), 1665-1677. (2016) Zbl1354.30028MR3580805DOI10.1216/rmj-2016-46-5-1665
  15. Salem, A., 10.7153/mia-2020-23-69, Math. Inequal. Appl. 23 (2020), 855-872. (2020) Zbl1453.33011MR4128957DOI10.7153/mia-2020-23-69
  16. Salem, A., Alzahrani, F., 10.7153/jmi-2019-13-03, J. Math. Inequal. 13 (2019), 37-52. (2019) Zbl1416.33023MR3928268DOI10.7153/jmi-2019-13-03
  17. Uchimura, K., 10.1016/0097-3165(81)90009-1, J. Comb. Theory, Ser. A 31 (1981), 131-135. (1981) Zbl0473.05006MR0629588DOI10.1016/0097-3165(81)90009-1
  18. Waerden, B. L. van der, 10.1007/978-3-642-85527-6, Heidelberger Taschenbücher 12. Springer, Berlin (1971), German. (1971) Zbl0221.12001MR0069787DOI10.1007/978-3-642-85527-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.