Input-output systems in Biology and Chemistry and a class of mathematical models describing them
Applications of Mathematics (2005)
- Volume: 50, Issue: 3, page 219-245
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBohl, Erich, and Marek, Ivo. "Input-output systems in Biology and Chemistry and a class of mathematical models describing them." Applications of Mathematics 50.3 (2005): 219-245. <http://eudml.org/doc/33219>.
@article{Bohl2005,
abstract = {Our aim is to show a class of mathematical models in application to some problems of cell biology. Typically, our models are described via classical chemical networks. This property is visualized by a conservation law. Mathematically, this conservation law guarantees most of the mathematical properties of the models such as global existence and uniqueness of solutions as well as positivity of the solutions for positive data. These properties are consequences of the fact that the infinitesimal generators forming the underlying dynamical systems are (nonlinear) negative $M$-operators.},
author = {Bohl, Erich, Marek, Ivo},
journal = {Applications of Mathematics},
keywords = {dynamical system; input-output system; chemical network; boundary layer; dynamical system; input-output system; chemical network; boundary layer},
language = {eng},
number = {3},
pages = {219-245},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Input-output systems in Biology and Chemistry and a class of mathematical models describing them},
url = {http://eudml.org/doc/33219},
volume = {50},
year = {2005},
}
TY - JOUR
AU - Bohl, Erich
AU - Marek, Ivo
TI - Input-output systems in Biology and Chemistry and a class of mathematical models describing them
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 219
EP - 245
AB - Our aim is to show a class of mathematical models in application to some problems of cell biology. Typically, our models are described via classical chemical networks. This property is visualized by a conservation law. Mathematically, this conservation law guarantees most of the mathematical properties of the models such as global existence and uniqueness of solutions as well as positivity of the solutions for positive data. These properties are consequences of the fact that the infinitesimal generators forming the underlying dynamical systems are (nonlinear) negative $M$-operators.
LA - eng
KW - dynamical system; input-output system; chemical network; boundary layer; dynamical system; input-output system; chemical network; boundary layer
UR - http://eudml.org/doc/33219
ER -
References
top- Molecular Biology of the Cell, Garland Publishing, New York-London, 1989. (1989)
- Nonnegative Matrices in Dynamic Systems, J. Wiley, New York, 1989. (1989) MR1019319
- Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York-San Francisco-London, 1979. (1979) MR0544666
- A boundary layer phenomenon for linear systems with a rank deficient matrix, Z. Angew. Math. Mech. 7/8 (1991), 223–231. (1991) Zbl0792.65057MR1121486
- Constructing amplification via chemical circuits, In: Biomedical Modeling Simulation, J. Eisarfeld, D. S. Leonis, M. Witken (eds.), Elsevier Science Publ., Amsterdam, 1992, pp. 331–334. (1992)
- Structural amplification in chemical networks, In: Complexity, Chaos and Biological Evolution, E. Mosekilde, L. Mosekilde (eds.), Plenum Press, New York, 1991, pp. 119–128. (1991)
- 10.1006/jtbi.1996.0342, J. Theor. Biology 186 (1997), 65–74. (1997) DOI10.1006/jtbi.1996.0342
- 10.1016/0377-0427(95)00055-0, J. Comput. Appl. Math. 63 (1995), 11–25. (1995) MR1365548DOI10.1016/0377-0427(95)00055-0
- 10.1016/0024-3795(93)90524-R, Linear Algebra Appl. 180 (1993), 35–59. (1993) MR1206409DOI10.1016/0024-3795(93)90524-R
- 10.1016/0377-0427(95)00052-6, J. Comput. Appl. Math. 63 (1995), 27–47. (1995) MR1365549DOI10.1016/0377-0427(95)00052-6
- 10.1016/0377-0427(94)00081-B, J. Comput. Appl. Math. 60 (1995), 13–28. (1995) MR1354645DOI10.1016/0377-0427(94)00081-B
- 10.1007/BF01300579, Integral Equations Oper. Theory 34 (1999), 251–269. (1999) MR1689389DOI10.1007/BF01300579
- Existence and uniqueness results for nonlinear cooperative systems, Oper. Theory, Adv. Appl. 130 (2002), 153–170. (2002) MR1902006
- 10.1006/jtbi.1995.0006, Theoret. Biol. 172 (1995), 83–94. (1995) DOI10.1006/jtbi.1995.0006
- Periplasmic binding-protein-dependent ABC transporters, In: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, H. E. Umbarger (eds.), American Society of Microbiology, Washington, DC, 1996, pp. 1175–1209. (1996)
- Fundamentals of Enzyme Kinetics, Portland Press, London, 1995. (1995)
- Konstanz University PhD. Thesis, to be completed in 2005, .
- Functional Analysis and Semi-groups, Amer. Math. Soc. Coll. Publ. Vol. XXXI, third printing of Revised Edition, Providence, 1974. (1974) MR0423094
- Mathematical Physiology, Springer-Verlag, New York, 1998. (1998) MR1673204
- Linear operators leaving invariant a cone in a Banach space, Uspekhi mat. nauk III (1948), 3–95 (Russian). (1948) MR0027128
- Dependence of maltose and chemotaxis on the amount of maltose-binding protein, J. Biol. Chem. 260 (1985), 9727–9733. (1985)
- Schwarz-like methods for approximate solving cooperative systems, Kybernetika 40 (2004), 611–624. (2004) Zbl1151.65341MR2121000
- Pseudoirreducible and pseudoprimitive operators, Linear Algebra Appl. 154–156 (1991), 779–791. (1991) MR1113169
- Analytic Theory of Matrices for Applied Sciences, Vol. 1. Teubner Texte zur Mathematik, Band 60, , Leipzig, 1983. (1983) MR0731071
- 10.1006/jtbi.1995.0236, J. Theor. Biology 177 (1995), 171–179. (1995) DOI10.1006/jtbi.1995.0236
- Die Kinetic der Invertierung, Biochem. Z. 49 (1913), 333–369. (1913)
- 10.1016/S0022-2836(65)80285-6, J. Mol. Biol. 12 (1965), 88–118. (1965) DOI10.1016/S0022-2836(65)80285-6
- On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 53–64. (1964) Zbl0138.07801MR0187096
- Banach Lattices and Positive Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974. (1974) Zbl0296.47023MR0423039
- Topological Vector Spaces, Springer Verlag, New York-Heidelberg-Berlin, 1971. (1971) Zbl0217.16002MR0342978
- 10.1137/0707041, SIAM J. Numer. Anal. 7 (1970), 508–519. (1970) MR0277550DOI10.1137/0707041
- 10.1111/j.1432-1033.1976.tb10383.x, Eur. J. Biochem. 65 (1976), 13–19. (1976) DOI10.1111/j.1432-1033.1976.tb10383.x
- Introduction to Functional Analysis, second edition, J. Wiley, New York, 1980. (1980) MR0564653
- Das Upg-Transportsystem in Escherichia coli: Mathematische Modellierung und experimentelle Befunde, Berichte aus der Biologie, Shaker Verlag, Aachen, 2003, Dissertation der Universität Konstanz. (2003)
- 10.1006/jtbi.2000.2140, J. Theor. Biol. 207 (2000), 1–14. (2000) DOI10.1006/jtbi.2000.2140
- 10.1070/RM1963v018n03ABEH001137, Russ. Math. Surv. 18 (1963), 13–84. (1963) MR0158137DOI10.1070/RM1963v018n03ABEH001137
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.