Homogenization of some parabolic operators with several time scales

Liselott Flodén; Marianne Olsson

Applications of Mathematics (2007)

  • Volume: 52, Issue: 5, page 431-446
  • ISSN: 0862-7940

Abstract

top
The main focus in this paper is on homogenization of the parabolic problem t u ε - · ( a ( x / ε , t / ε , t / ε r ) u ε ) = f . Under certain assumptions on a , there exists a G -limit b , which we characterize by means of multiscale techniques for r > 0 , r 1 . Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.

How to cite

top

Flodén, Liselott, and Olsson, Marianne. "Homogenization of some parabolic operators with several time scales." Applications of Mathematics 52.5 (2007): 431-446. <http://eudml.org/doc/33300>.

@article{Flodén2007,
abstract = {The main focus in this paper is on homogenization of the parabolic problem $ \partial _\{t\}u^\{\varepsilon \}-\nabla \cdot ( a( \{x\}/\{\varepsilon \},\{t\}/\{\varepsilon \}, \{t\}/\{\varepsilon ^\{r\}\})\nabla u^\{\varepsilon \}) =f$. Under certain assumptions on $a$, there exists a $G$-limit $b$, which we characterize by means of multiscale techniques for $r>0$, $r\ne 1$. Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.},
author = {Flodén, Liselott, Olsson, Marianne},
journal = {Applications of Mathematics},
keywords = {homogenization; $G$-convergence; multiscale convergence; parabolic; asymptotic expansion; homogenization; -convergence; multiscale convergence; parabolic equation; asymptotic expansion},
language = {eng},
number = {5},
pages = {431-446},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of some parabolic operators with several time scales},
url = {http://eudml.org/doc/33300},
volume = {52},
year = {2007},
}

TY - JOUR
AU - Flodén, Liselott
AU - Olsson, Marianne
TI - Homogenization of some parabolic operators with several time scales
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 5
SP - 431
EP - 446
AB - The main focus in this paper is on homogenization of the parabolic problem $ \partial _{t}u^{\varepsilon }-\nabla \cdot ( a( {x}/{\varepsilon },{t}/{\varepsilon }, {t}/{\varepsilon ^{r}})\nabla u^{\varepsilon }) =f$. Under certain assumptions on $a$, there exists a $G$-limit $b$, which we characterize by means of multiscale techniques for $r>0$, $r\ne 1$. Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.
LA - eng
KW - homogenization; $G$-convergence; multiscale convergence; parabolic; asymptotic expansion; homogenization; -convergence; multiscale convergence; parabolic equation; asymptotic expansion
UR - http://eudml.org/doc/33300
ER -

References

top
  1. 10.1137/0523084, SIAM J.  Math. Anal. 23 (1992), 1482–1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
  2. Multiscale convergence and reiterated homogenization, Proc. R.  Soc. Edinburgh, Sect.  A 126 (1996), 297–342. (1996) MR1386865
  3. Correctors for the homogenization of the heat and wave equations, J.  Math. Pures Appl. 71 (1992), 197–231. (1992) MR1172450
  4. Asymptotic Analysis for Periodic Structures. Stud. Math. Appl, North-Holland, Amsterdam-New York-Oxford, 1978. (1978) MR0503330
  5. An Introduction to Homogenization. Oxford Lecture Ser. Math. Appl, Oxford University Press, Oxford, 1999. (1999) MR1765047
  6. Sur la convergence de solutions d’équations paraboliques, J.  Math. Pures Appl. 56 (1977), 263–305. (French) (1977) MR0603300
  7. A corrector result for H -converging parabolic problems with time-dependent coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 25 (1997), 329–373. (1997) MR1655521
  8. 10.1023/A:1023049608047, Appl. Math. 42 (1997), 321–343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
  9. 10.1007/s10492-005-0009-z, Appl. Math. 50 (2005), 131–151. (2005) MR2125155DOI10.1007/s10492-005-0009-z
  10. Two-scale convergence, Int. J.  Pure Appl. Math. 2 (2002), 35–86. (2002) MR1912819
  11. 10.1137/0520043, SIAM J.  Math. Anal. 20 (1989), 608–623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
  12. G -convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications, Kluwer, Dordrecht, 1997. (1997) MR1482803
  13. Uniformità per una convergenza di operatori parabolichi nel caso dell’omogenizzazione, Boll. Unione Math. Ital. Ser.  B 16 (1979), 826–841. (Italian) (1979) MR0553800
  14. Convergence of parabolic equations, Boll. Unione Math. Ital.  Ser. B 14 (1977), 547–568. (1977) Zbl0356.35042MR0460889
  15. 10.1016/S0362-546X(97)00532-4, Nonlinear Anal. Theory Methods Appl. 36 (1999), 807–843. (1999) Zbl0933.35020MR1682689DOI10.1016/S0362-546X(97)00532-4
  16. 10.2991/jnmp.2000.7.3.2, J.  Nonlinear Math. Phys. 7 (2000), 268–283. (2000) Zbl0954.35023MR1777302DOI10.2991/jnmp.2000.7.3.2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.