Homogenization of some parabolic operators with several time scales
Liselott Flodén; Marianne Olsson
Applications of Mathematics (2007)
- Volume: 52, Issue: 5, page 431-446
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFlodén, Liselott, and Olsson, Marianne. "Homogenization of some parabolic operators with several time scales." Applications of Mathematics 52.5 (2007): 431-446. <http://eudml.org/doc/33300>.
@article{Flodén2007,
abstract = {The main focus in this paper is on homogenization of the parabolic problem $ \partial _\{t\}u^\{\varepsilon \}-\nabla \cdot ( a( \{x\}/\{\varepsilon \},\{t\}/\{\varepsilon \}, \{t\}/\{\varepsilon ^\{r\}\})\nabla u^\{\varepsilon \}) =f$. Under certain assumptions on $a$, there exists a $G$-limit $b$, which we characterize by means of multiscale techniques for $r>0$, $r\ne 1$. Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.},
author = {Flodén, Liselott, Olsson, Marianne},
journal = {Applications of Mathematics},
keywords = {homogenization; $G$-convergence; multiscale convergence; parabolic; asymptotic expansion; homogenization; -convergence; multiscale convergence; parabolic equation; asymptotic expansion},
language = {eng},
number = {5},
pages = {431-446},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of some parabolic operators with several time scales},
url = {http://eudml.org/doc/33300},
volume = {52},
year = {2007},
}
TY - JOUR
AU - Flodén, Liselott
AU - Olsson, Marianne
TI - Homogenization of some parabolic operators with several time scales
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 5
SP - 431
EP - 446
AB - The main focus in this paper is on homogenization of the parabolic problem $ \partial _{t}u^{\varepsilon }-\nabla \cdot ( a( {x}/{\varepsilon },{t}/{\varepsilon }, {t}/{\varepsilon ^{r}})\nabla u^{\varepsilon }) =f$. Under certain assumptions on $a$, there exists a $G$-limit $b$, which we characterize by means of multiscale techniques for $r>0$, $r\ne 1$. Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.
LA - eng
KW - homogenization; $G$-convergence; multiscale convergence; parabolic; asymptotic expansion; homogenization; -convergence; multiscale convergence; parabolic equation; asymptotic expansion
UR - http://eudml.org/doc/33300
ER -
References
top- 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482–1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
- Multiscale convergence and reiterated homogenization, Proc. R. Soc. Edinburgh, Sect. A 126 (1996), 297–342. (1996) MR1386865
- Correctors for the homogenization of the heat and wave equations, J. Math. Pures Appl. 71 (1992), 197–231. (1992) MR1172450
- Asymptotic Analysis for Periodic Structures. Stud. Math. Appl, North-Holland, Amsterdam-New York-Oxford, 1978. (1978) MR0503330
- An Introduction to Homogenization. Oxford Lecture Ser. Math. Appl, Oxford University Press, Oxford, 1999. (1999) MR1765047
- Sur la convergence de solutions d’équations paraboliques, J. Math. Pures Appl. 56 (1977), 263–305. (French) (1977) MR0603300
- A corrector result for -converging parabolic problems with time-dependent coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 25 (1997), 329–373. (1997) MR1655521
- 10.1023/A:1023049608047, Appl. Math. 42 (1997), 321–343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
- 10.1007/s10492-005-0009-z, Appl. Math. 50 (2005), 131–151. (2005) MR2125155DOI10.1007/s10492-005-0009-z
- Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), 35–86. (2002) MR1912819
- 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608–623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- -convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications, Kluwer, Dordrecht, 1997. (1997) MR1482803
- Uniformità per una convergenza di operatori parabolichi nel caso dell’omogenizzazione, Boll. Unione Math. Ital. Ser. B 16 (1979), 826–841. (Italian) (1979) MR0553800
- Convergence of parabolic equations, Boll. Unione Math. Ital. Ser. B 14 (1977), 547–568. (1977) Zbl0356.35042MR0460889
- 10.1016/S0362-546X(97)00532-4, Nonlinear Anal. Theory Methods Appl. 36 (1999), 807–843. (1999) Zbl0933.35020MR1682689DOI10.1016/S0362-546X(97)00532-4
- 10.2991/jnmp.2000.7.3.2, J. Nonlinear Math. Phys. 7 (2000), 268–283. (2000) Zbl0954.35023MR1777302DOI10.2991/jnmp.2000.7.3.2
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.