New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems
Youcef Elhamam Hemici; Samia Khelladi; Djamel Benterki
Kybernetika (2024)
- Issue: 4, page 535-552
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHemici, Youcef Elhamam, Khelladi, Samia, and Benterki, Djamel. "New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems." Kybernetika (2024): 535-552. <http://eudml.org/doc/299389>.
@article{Hemici2024,
abstract = {The conjugate gradient method is one of the most effective algorithm for unconstrained nonlinear optimization problems. This is due to the fact that it does not need a lot of storage memory and its simple structure properties, which motivate us to propose a new hybrid conjugate gradient method through a convex combination of $\beta _\{k\}^\{RMIL\}$ and $\beta _\{k\}^\{HS\}$. We compute the convex parameter $\theta _\{k\}$ using the Newton direction. Global convergence is established through the strong Wolfe conditions. Numerical experiments show the superior efficiency of our algorithm to solve unconstrained optimization problem compared to other considered methods. Applied to image restoration problem, our algorithm is competitive with existing algorithms and performs even better when the level of noise in the image is significant.},
author = {Hemici, Youcef Elhamam, Khelladi, Samia, Benterki, Djamel},
journal = {Kybernetika},
keywords = {unconstrained optimization; conjugate gradient method; descent direction; line search; image restoration},
language = {eng},
number = {4},
pages = {535-552},
publisher = {Institute of Information Theory and Automation AS CR},
title = {New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems},
url = {http://eudml.org/doc/299389},
year = {2024},
}
TY - JOUR
AU - Hemici, Youcef Elhamam
AU - Khelladi, Samia
AU - Benterki, Djamel
TI - New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 535
EP - 552
AB - The conjugate gradient method is one of the most effective algorithm for unconstrained nonlinear optimization problems. This is due to the fact that it does not need a lot of storage memory and its simple structure properties, which motivate us to propose a new hybrid conjugate gradient method through a convex combination of $\beta _{k}^{RMIL}$ and $\beta _{k}^{HS}$. We compute the convex parameter $\theta _{k}$ using the Newton direction. Global convergence is established through the strong Wolfe conditions. Numerical experiments show the superior efficiency of our algorithm to solve unconstrained optimization problem compared to other considered methods. Applied to image restoration problem, our algorithm is competitive with existing algorithms and performs even better when the level of noise in the image is significant.
LA - eng
KW - unconstrained optimization; conjugate gradient method; descent direction; line search; image restoration
UR - http://eudml.org/doc/299389
ER -
References
top- Andrei, N., , Adv. Model. Optim. 10 (2008), 147-161. MR2424936DOI
- Andrei, N., Nonlinear conjugate gradient methods for unconstrained optimization., Springer Optimization and its Applications, Romania 2020. MR4179461
- Hanachi, S. Ben, Sellami, B., Belloufi, M., , RAIRO - Oper. Res. 56 (2022), 2315-2327. MR4458849DOI
- Cai, J. F., Chan, R., Morini, B., Minimization of an edge-preserving regularization functional by conjugate gradient type methods., Image Processing Based on Partial Differential Equations. Mathematics and Visualization. Springer, Berlin, Heidelberg 2007. MR2424224
- Chan, R. H., Ho, C. W., Nikolova, M., , IEEE Trans. Image Process. 14 (2005), 10, 1479-1485. MR2170264DOI
- Dai, Y. H., Yuan, Y., , SIAM J. Optim. 10 (1999), 1, 177-182. Zbl0957.65061MR1740963DOI
- Dai, Y. H., Yuan, Y., 10.1023/A:1012930416777, Ann. Oper. Res. 103 (2001), 33-47. MR1868442DOI10.1023/A:1012930416777
- Delladji, S., Belloufi, M., Sellami, B., New hybrid conjugate gradient method as a convex combination of FR and BA methods., J. Inform. Optim. Sci. 42 (2021), 3, 591-602.
- Djordjevic, S., , Acta Math. Scientia 39B (2019), 1, 214-228. MR4064244DOI
- Djordjevic, S., New hybrid conjugate gradient method as a convex combination of HS and FR methods., J. Appl. Math. Comput. 2 (2018), 9, 366-378. MR4064244
- Dolan, E. D., Moré, J. J., , Math. Program. 91 (2002), 201-213. Zbl1049.90004MR1875515DOI
- Fletcher, R., Practical Methods of Optimization., Unconstrained Optimization. Wiley, New York 1987. MR0955799
- Fletcher, R., Reeves, C. M., , Comput. J. 7 (1964), 2, 149-154. Zbl0132.11701MR0187375DOI
- Hager, W. W., Zhang, H., A survey of nonlinear conjugate gradient methods., Pacific J. Optim. 2 (2006), 35-58. MR2548208
- Hestenes, M. R., Steifel, E., , J. Res. Natl. Bur. Stand. 49 (1952), 6, 409-436. MR0060307DOI
- Jiang, X., Liao, W., Yin, J., Jian, J., , Numer. Algor. 91 (2022), 161-191. MR4466147DOI
- Liu, Y., Storey, C., , Part 1: Theory. J. Optim. Theory Appl. 69 (1991), 1, 129-137. MR1104590DOI
- Ma, G., Lin, H., Jin, W., Han, D., , J. Appl. Math. Comput. 68 (2022), 4733-4758. MR4519772DOI
- Malik, M., Sulaiman, I. M., Abubakar, A. B., Ardaneswari, G., Sukono, A., , AIMS Math. 8 (2023), 1-28. MR4501065DOI
- Mtagulwa, P., Kaelo, P., A convergent modified HS-DY hybrid conjugate gradient method for unconstrained optimization problems., J. Inform. Optim. Sci. 40 (2019), 1, 97-113. MR3895187
- Polak, E., Ribiere, G., Note sur la convergence des mé thodes de directions conjuguées., Rev. Française Inform. Recherche Opertionelle 16 (1969), 35-43. MR0255025
- Polyak, B. T., 10.1016/0041-5553(69)90035-4, U.S.S.R. Comput. Math. Phys. 9 (1969), 94-112. DOI10.1016/0041-5553(69)90035-4
- Powell, M. J. D., 10.1007/BF01593790, Math. Program. 2 (1977), 241-254. MR0478622DOI10.1007/BF01593790
- Rivaie, M., Mustafa, M., Leong, W. J., Ismail, M., , Appl. Math. Comput. 218 (2012), 22, 11323-11332. MR2942413DOI
- Rivaie, M., Mustafa, M., Abdelrhaman, A., , Appl. Math. Comput. 268 (2015), 1152-1163. MR3399494DOI
- Sellami, B., Chaib, Y., , Ann. Oper. Res. Springer 241 (2016), 497-513. MR3509428DOI
- Sellami, B., Chaib, Y., , RAIRO Oper. Res. 50 (2016), 1013-1026. MR3570546DOI
- Yang, X., Luo, Z., Dai, X., A global convergence of LS-CD hybrid conjugate gradient method., Adv. Numer. Anal. 2013 (2013), 5 pp. MR3125068
- Zoutendijk, G., Nonlinear programming, computational methods., In: Integer and Nonlinear Programming (J. Abadie, ed.), 1970, pp. 37-86. MR0437081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.