Time regularity of generalized Navier-Stokes equation with -power law
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1017-1056
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSin, Cholmin. "Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law." Czechoslovak Mathematical Journal 73.4 (2023): 1017-1056. <http://eudml.org/doc/299395>.
@article{Sin2023,
abstract = {We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\ge (3n+2)/(n+2)$, $n\ge 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.},
author = {Sin, Cholmin},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak solution; time regularity; generalized Newtonian fluid; variable exponent},
language = {eng},
number = {4},
pages = {1017-1056},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law},
url = {http://eudml.org/doc/299395},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Sin, Cholmin
TI - Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1017
EP - 1056
AB - We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\ge (3n+2)/(n+2)$, $n\ge 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.
LA - eng
KW - weak solution; time regularity; generalized Newtonian fluid; variable exponent
UR - http://eudml.org/doc/299395
ER -
References
top- Abbatiello, A., Bulíček, M., Kaplický, P., 10.1007/s00021-019-0415-8, J. Math. Fluid Mech. 21 (2019), Article ID 15, 22 pages. (2019) Zbl1414.35160MR3911730DOI10.1007/s00021-019-0415-8
- Acerbi, E., Mingione, G., 10.1007/s00205-002-0208-7, Arch. Ration. Mech. Anal. 164 (2002), 213-259. (2002) Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
- Acerbi, E., Mingione, G., 10.1515/crll.2005.2005.584.117, J. Reine Angew. Math. 584 (2005), 117-148. (2005) Zbl1093.76003MR2155087DOI10.1515/crll.2005.2005.584.117
- Antontsev, S. N., Rodrigues, J. F., 10.1007/s11565-006-0002-9, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. (2006) Zbl1117.76004MR2246902DOI10.1007/s11565-006-0002-9
- Veiga, H. Beirão da, Kaplický, P., Růžička, M., 10.1007/s00021-010-0025-y, J. Math. Fluid Mech. 13 (2011), 387-404. (2011) Zbl1270.35360MR2824490DOI10.1007/s00021-010-0025-y
- Bennett, C., Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics 129. Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
- Berselli, L. C., Diening, L., Růžička, M., 10.1007/s00021-008-0277-y, J. Math. Fluid Mech. 12 (2010), 101-132. (2010) Zbl1261.35118MR2602916DOI10.1007/s00021-008-0277-y
- Breit, D., Mensah, P. R., 10.1093/imanum/drz039, IMA J. Numer. Anal. 40 (2020), 2505-2552. (2020) Zbl1466.65122MR4167054DOI10.1093/imanum/drz039
- Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D., 10.3934/cpaa.2009.8.1503, Commun. Pure Appl. Anal. 8 (2009), 1503-1520. (2009) Zbl1200.37074MR2505283DOI10.3934/cpaa.2009.8.1503
- Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D., 10.1002/mma.1314, Math. Methods Appl. Sci. 33 (2010), 1995-2010. (2010) Zbl1202.35152MR2744616DOI10.1002/mma.1314
- Bulíček, M., Kaplický, P., Pražák, D., 10.1142/S0218202519500209, Math. Models Methods Appl. Sci. 29 (2019), 1207-1225. (2019) Zbl1425.35147MR3963639DOI10.1142/S0218202519500209
- Bulíček, M., Pustějovská, P., 10.1016/j.jmaa.2012.12.066, J. Math. Anal. Appl. 402 (2013), 157-166. (2013) Zbl1308.76068MR3023245DOI10.1016/j.jmaa.2012.12.066
- Bulíček, M., Pustějovská, P., 10.1137/130927589, SIAM J. Math. Anal. 46 (2014), 3223-3240. (2014) Zbl1308.35199MR3262601DOI10.1137/130927589
- Burczak, J., Kaplický, P., 10.3934/cpaa.2016042, Commun. Pure Appl. Anal. 15 (2016), 2401-2445. (2016) Zbl1362.35160MR3565947DOI10.3934/cpaa.2016042
- Crispo, F., 10.1007/s10440-014-9897-9, Acta Appl. Math. 132 (2014), 237-250. (2014) Zbl1295.76004MR3255040DOI10.1007/s10440-014-9897-9
- Diening, L., Theoretical and Numerical Results for Electrorheological Fluids: Ph. D. Thesis, Universität Freiburg, Freiburg im Breisgau (2002). (2002) Zbl1022.76001
- Diening, L., Růžička, M., 10.1007/s00021-004-0124-8, J. Math. Fluid Mech. 7 (2005), 413-450. (2005) Zbl1080.76005MR2166983DOI10.1007/s00021-004-0124-8
- Diening, L., Růžička, M., Wolf, J., 10.2422/2036-2145.2010.1.01, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. (2010) Zbl1253.76017MR2668872DOI10.2422/2036-2145.2010.1.01
- Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. AMS, Providence (1998). (1998) Zbl0902.35002MR1625845DOI10.1090/gsm/019
- Frehse, J., Schwarzacher, S., 10.1137/141000725, SIAM J. Math. Anal. 45 (2015), 3917-3943. (2015) Zbl1325.35108MR3411724DOI10.1137/141000725
- Frigeri, S., Grasselli, M., Pražák, D., 10.1016/j.jmaa.2017.10.078, J. Math. Anal. Appl. 459 (2018), 753-777. (2018) Zbl1382.35218MR3732553DOI10.1016/j.jmaa.2017.10.078
- Grasselli, M., Pražák, D., 10.4171/ZAA/1511, Z. Anal. Anwend. 33 (2014), 271-288. (2014) Zbl1297.35185MR3229587DOI10.4171/ZAA/1511
- Kaplický, P., Time regularity of flows of non-Newtonian fluids, IASME Trans. 2 (2005), 1232-1236. (2005) MR2214014
- Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969). (1969) Zbl0184.52603MR0254401
- Málek, J., Nečas, J., Rokyta, M., Růžička, M., 10.1201/9780367810771, Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). (1996) Zbl0851.35002MR1409366DOI10.1201/9780367810771
- Málek, J., Nečas, J., Růžička, M., 10.57262/ade/1357141212, Adv. Differ. Equ. 6 (2001), 257-302. (2001) Zbl1021.35085MR1799487DOI10.57262/ade/1357141212
- Naumann, J., Wolf, J., Wolff, M., On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions, Commentat. Math. Univ. Carol. 39 (1998), 237-255. (1998) Zbl0940.35046MR1651938
- Pastukhova, S. E., 10.1134/S1064562410010199, Dokl. Math. 81 (2010), 66-71. (2010) Zbl1202.35161MR2675418DOI10.1134/S1064562410010199
- Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
- Růžička, M., 10.1007/s10492-004-6432-8, Appl. Math., Praha 49 (2004), 565-609. (2004) Zbl1099.35103MR2099981DOI10.1007/s10492-004-6432-8
- Simon, J., 10.1007/BF01765315, Ann. Mat. Pura Appl., IV. Ser. 157 (1990), 117-148. (1990) Zbl0727.46018MR1108473DOI10.1007/BF01765315
- Sin, C., 10.1016/j.jmaa.2016.07.019, J. Math. Anal. Appl. 445 (2017), 1025-1046. (2017) Zbl1352.35124MR3543809DOI10.1016/j.jmaa.2016.07.019
- Sin, C., 10.1016/j.na.2017.06.014, Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. (2017) Zbl1375.35400MR3695973DOI10.1016/j.na.2017.06.014
- Sin, C., 10.1007/s00021-018-0379-0, J. Math. Fluid Mech. 20 (2018), 1617-1639. (2018) Zbl1404.35080MR3877488DOI10.1007/s00021-018-0379-0
- Sin, C., 10.1016/j.jmaa.2017.10.081, J. Math. Anal. Appl. 461 (2018), 752-776. (2018) Zbl1387.35082MR3759566DOI10.1016/j.jmaa.2017.10.081
- Sin, C., 10.1016/j.na.2018.08.009, Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. (2019) Zbl1404.35079MR3886635DOI10.1016/j.na.2018.08.009
- Sin, C., 10.1016/j.na.2020.112029, Nonlinear Anal., Theory Methods Appl., Ser. A 200 (2020), Article ID 112029, 23 pages. (2020) Zbl1450.35225MR4111765DOI10.1016/j.na.2020.112029
- Sin, C., Baranovskii, E. S., 10.1016/j.jmaa.2022.126632, J. Math. Anal. Appl. 517 (2023), Article ID 126632, 31 pages. (2023) Zbl1498.35438MR4486161DOI10.1016/j.jmaa.2022.126632
- Sohr, H., 10.1007/978-3-0348-8255-2, Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). (2001) Zbl0983.35004MR1928881DOI10.1007/978-3-0348-8255-2
- Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). (1984) Zbl0568.35002MR0769654
- Zhikov, V. V., 10.1007/s10688-009-0027-9, Funct. Anal. Appl. 43 (2009), 190-207. (2009) Zbl1271.35061MR2583638DOI10.1007/s10688-009-0027-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.