Time regularity of generalized Navier-Stokes equation with p ( x , t ) -power law

Cholmin Sin

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1017-1056
  • ISSN: 0011-4642

Abstract

top
We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by p ( x , t ) -power law for p ( x , t ) ( 3 n + 2 ) / ( n + 2 ) , n 2 , by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.

How to cite

top

Sin, Cholmin. "Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law." Czechoslovak Mathematical Journal 73.4 (2023): 1017-1056. <http://eudml.org/doc/299395>.

@article{Sin2023,
abstract = {We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\ge (3n+2)/(n+2)$, $n\ge 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.},
author = {Sin, Cholmin},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak solution; time regularity; generalized Newtonian fluid; variable exponent},
language = {eng},
number = {4},
pages = {1017-1056},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law},
url = {http://eudml.org/doc/299395},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Sin, Cholmin
TI - Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1017
EP - 1056
AB - We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\ge (3n+2)/(n+2)$, $n\ge 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.
LA - eng
KW - weak solution; time regularity; generalized Newtonian fluid; variable exponent
UR - http://eudml.org/doc/299395
ER -

References

top
  1. Abbatiello, A., Bulíček, M., Kaplický, P., 10.1007/s00021-019-0415-8, J. Math. Fluid Mech. 21 (2019), Article ID 15, 22 pages. (2019) Zbl1414.35160MR3911730DOI10.1007/s00021-019-0415-8
  2. Acerbi, E., Mingione, G., 10.1007/s00205-002-0208-7, Arch. Ration. Mech. Anal. 164 (2002), 213-259. (2002) Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
  3. Acerbi, E., Mingione, G., 10.1515/crll.2005.2005.584.117, J. Reine Angew. Math. 584 (2005), 117-148. (2005) Zbl1093.76003MR2155087DOI10.1515/crll.2005.2005.584.117
  4. Antontsev, S. N., Rodrigues, J. F., 10.1007/s11565-006-0002-9, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. (2006) Zbl1117.76004MR2246902DOI10.1007/s11565-006-0002-9
  5. Veiga, H. Beirão da, Kaplický, P., Růžička, M., 10.1007/s00021-010-0025-y, J. Math. Fluid Mech. 13 (2011), 387-404. (2011) Zbl1270.35360MR2824490DOI10.1007/s00021-010-0025-y
  6. Bennett, C., Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics 129. Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
  7. Berselli, L. C., Diening, L., Růžička, M., 10.1007/s00021-008-0277-y, J. Math. Fluid Mech. 12 (2010), 101-132. (2010) Zbl1261.35118MR2602916DOI10.1007/s00021-008-0277-y
  8. Breit, D., Mensah, P. R., 10.1093/imanum/drz039, IMA J. Numer. Anal. 40 (2020), 2505-2552. (2020) Zbl1466.65122MR4167054DOI10.1093/imanum/drz039
  9. Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D., 10.3934/cpaa.2009.8.1503, Commun. Pure Appl. Anal. 8 (2009), 1503-1520. (2009) Zbl1200.37074MR2505283DOI10.3934/cpaa.2009.8.1503
  10. Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D., 10.1002/mma.1314, Math. Methods Appl. Sci. 33 (2010), 1995-2010. (2010) Zbl1202.35152MR2744616DOI10.1002/mma.1314
  11. Bulíček, M., Kaplický, P., Pražák, D., 10.1142/S0218202519500209, Math. Models Methods Appl. Sci. 29 (2019), 1207-1225. (2019) Zbl1425.35147MR3963639DOI10.1142/S0218202519500209
  12. Bulíček, M., Pustějovská, P., 10.1016/j.jmaa.2012.12.066, J. Math. Anal. Appl. 402 (2013), 157-166. (2013) Zbl1308.76068MR3023245DOI10.1016/j.jmaa.2012.12.066
  13. Bulíček, M., Pustějovská, P., 10.1137/130927589, SIAM J. Math. Anal. 46 (2014), 3223-3240. (2014) Zbl1308.35199MR3262601DOI10.1137/130927589
  14. Burczak, J., Kaplický, P., 10.3934/cpaa.2016042, Commun. Pure Appl. Anal. 15 (2016), 2401-2445. (2016) Zbl1362.35160MR3565947DOI10.3934/cpaa.2016042
  15. Crispo, F., 10.1007/s10440-014-9897-9, Acta Appl. Math. 132 (2014), 237-250. (2014) Zbl1295.76004MR3255040DOI10.1007/s10440-014-9897-9
  16. Diening, L., Theoretical and Numerical Results for Electrorheological Fluids: Ph. D. Thesis, Universität Freiburg, Freiburg im Breisgau (2002). (2002) Zbl1022.76001
  17. Diening, L., Růžička, M., 10.1007/s00021-004-0124-8, J. Math. Fluid Mech. 7 (2005), 413-450. (2005) Zbl1080.76005MR2166983DOI10.1007/s00021-004-0124-8
  18. Diening, L., Růžička, M., Wolf, J., 10.2422/2036-2145.2010.1.01, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. (2010) Zbl1253.76017MR2668872DOI10.2422/2036-2145.2010.1.01
  19. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. AMS, Providence (1998). (1998) Zbl0902.35002MR1625845DOI10.1090/gsm/019
  20. Frehse, J., Schwarzacher, S., 10.1137/141000725, SIAM J. Math. Anal. 45 (2015), 3917-3943. (2015) Zbl1325.35108MR3411724DOI10.1137/141000725
  21. Frigeri, S., Grasselli, M., Pražák, D., 10.1016/j.jmaa.2017.10.078, J. Math. Anal. Appl. 459 (2018), 753-777. (2018) Zbl1382.35218MR3732553DOI10.1016/j.jmaa.2017.10.078
  22. Grasselli, M., Pražák, D., 10.4171/ZAA/1511, Z. Anal. Anwend. 33 (2014), 271-288. (2014) Zbl1297.35185MR3229587DOI10.4171/ZAA/1511
  23. Kaplický, P., Time regularity of flows of non-Newtonian fluids, IASME Trans. 2 (2005), 1232-1236. (2005) MR2214014
  24. Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969). (1969) Zbl0184.52603MR0254401
  25. Málek, J., Nečas, J., Rokyta, M., Růžička, M., 10.1201/9780367810771, Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). (1996) Zbl0851.35002MR1409366DOI10.1201/9780367810771
  26. Málek, J., Nečas, J., Růžička, M., 10.57262/ade/1357141212, Adv. Differ. Equ. 6 (2001), 257-302. (2001) Zbl1021.35085MR1799487DOI10.57262/ade/1357141212
  27. Naumann, J., Wolf, J., Wolff, M., On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions, Commentat. Math. Univ. Carol. 39 (1998), 237-255. (1998) Zbl0940.35046MR1651938
  28. Pastukhova, S. E., 10.1134/S1064562410010199, Dokl. Math. 81 (2010), 66-71. (2010) Zbl1202.35161MR2675418DOI10.1134/S1064562410010199
  29. Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
  30. Růžička, M., 10.1007/s10492-004-6432-8, Appl. Math., Praha 49 (2004), 565-609. (2004) Zbl1099.35103MR2099981DOI10.1007/s10492-004-6432-8
  31. Simon, J., 10.1007/BF01765315, Ann. Mat. Pura Appl., IV. Ser. 157 (1990), 117-148. (1990) Zbl0727.46018MR1108473DOI10.1007/BF01765315
  32. Sin, C., 10.1016/j.jmaa.2016.07.019, J. Math. Anal. Appl. 445 (2017), 1025-1046. (2017) Zbl1352.35124MR3543809DOI10.1016/j.jmaa.2016.07.019
  33. Sin, C., 10.1016/j.na.2017.06.014, Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. (2017) Zbl1375.35400MR3695973DOI10.1016/j.na.2017.06.014
  34. Sin, C., 10.1007/s00021-018-0379-0, J. Math. Fluid Mech. 20 (2018), 1617-1639. (2018) Zbl1404.35080MR3877488DOI10.1007/s00021-018-0379-0
  35. Sin, C., 10.1016/j.jmaa.2017.10.081, J. Math. Anal. Appl. 461 (2018), 752-776. (2018) Zbl1387.35082MR3759566DOI10.1016/j.jmaa.2017.10.081
  36. Sin, C., 10.1016/j.na.2018.08.009, Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. (2019) Zbl1404.35079MR3886635DOI10.1016/j.na.2018.08.009
  37. Sin, C., 10.1016/j.na.2020.112029, Nonlinear Anal., Theory Methods Appl., Ser. A 200 (2020), Article ID 112029, 23 pages. (2020) Zbl1450.35225MR4111765DOI10.1016/j.na.2020.112029
  38. Sin, C., Baranovskii, E. S., 10.1016/j.jmaa.2022.126632, J. Math. Anal. Appl. 517 (2023), Article ID 126632, 31 pages. (2023) Zbl1498.35438MR4486161DOI10.1016/j.jmaa.2022.126632
  39. Sohr, H., 10.1007/978-3-0348-8255-2, Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). (2001) Zbl0983.35004MR1928881DOI10.1007/978-3-0348-8255-2
  40. Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). (1984) Zbl0568.35002MR0769654
  41. Zhikov, V. V., 10.1007/s10688-009-0027-9, Funct. Anal. Appl. 43 (2009), 190-207. (2009) Zbl1271.35061MR2583638DOI10.1007/s10688-009-0027-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.