A twisted class number formula and Gross's special units over an imaginary quadratic field

Saad El Boukhari

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1333-1347
  • ISSN: 0011-4642

Abstract

top
Let F / k be a finite abelian extension of number fields with k imaginary quadratic. Let O F be the ring of integers of F and n 2 a rational integer. We construct a submodule in the higher odd-degree algebraic K -groups of O F using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of F , which is the cardinal of the finite algebraic K -group K 2 n - 2 ( O F ) .

How to cite

top

El Boukhari, Saad. "A twisted class number formula and Gross's special units over an imaginary quadratic field." Czechoslovak Mathematical Journal 73.4 (2023): 1333-1347. <http://eudml.org/doc/299417>.

@article{ElBoukhari2023,
abstract = {Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\ge 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_\{2n-2\}(O_F)$.},
author = {El Boukhari, Saad},
journal = {Czechoslovak Mathematical Journal},
keywords = {algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture},
language = {eng},
number = {4},
pages = {1333-1347},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A twisted class number formula and Gross's special units over an imaginary quadratic field},
url = {http://eudml.org/doc/299417},
volume = {73},
year = {2023},
}

TY - JOUR
AU - El Boukhari, Saad
TI - A twisted class number formula and Gross's special units over an imaginary quadratic field
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1333
EP - 1347
AB - Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\ge 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$.
LA - eng
KW - algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture
UR - http://eudml.org/doc/299417
ER -

References

top
  1. Borel, A., Cohomologie de S L n et valeurs de fonctions zeta aux points entiers, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977), 613-636 French. (1977) Zbl0382.57027MR0506168
  2. Bourbaki, N., Elements of Mathematics: Commutative Algebra, Hermann, Paris (1972). (1972) Zbl0279.13001MR0360549
  3. Gil, J. I. Burgos, 10.1090/crmm/015, CRM Monograph Series 15. AMS, Providence (2002). (2002) Zbl0994.19003MR1869655DOI10.1090/crmm/015
  4. Deninger, C., 10.2307/1971502, Ann. Math. (2) 132 (1990), 131-158. (1990) Zbl0721.14005MR1059937DOI10.2307/1971502
  5. Boukhari, S. El, 10.1007/s00229-017-0991-y, Manuscr. Math. 157 (2018), 23-49. (2018) Zbl1414.11138MR3845757DOI10.1007/s00229-017-0991-y
  6. Boukhari, S. El, 10.1090/proc/15837, Proc. Am. Math. Soc. 150 (2022), 3231-3239. (2022) Zbl1506.11147MR4439448DOI10.1090/proc/15837
  7. Boukhari, S. El, 10.48550/arXiv.2302.04049, Available at https://arxiv.org/abs/2302.04049 (2023), 17 pages. (2023) DOI10.48550/arXiv.2302.04049
  8. Flach, M., 10.1090/conm/358, Stark's Conjectures: Recent Work and New Directions Contemporary Mathematics 358. AMS, Providence (2004), 79-125. (2004) Zbl1070.11025MR2088713DOI10.1090/conm/358
  9. Ghate, E., Vandiver’s conjecture via K -theory, Cyclotomic Fields and Related Topics Bhaskaracharya Pratishthana, Pune (2000), 285-298. (2000) Zbl1048.11083MR1802389
  10. Gross, B. H., 10.4310/PAMQ.2005.v1.n1.a1, Pure Appl. Math. Q. 1 (2005), 1-13. (2005) Zbl1169.11050MR2154331DOI10.4310/PAMQ.2005.v1.n1.a1
  11. Johnson-Leung, J., 10.1090/conm/606, Women in Numbers 2: Research Directions in Number Theory Contemporary Mathematics 606. AMS, Providence (2013), 1-27. (2013) Zbl1286.11176MR3204289DOI10.1090/conm/606
  12. Klingen, H., 10.1007/BF01451369, Math. Ann. 145 (1962), 265-272 German. (1962) Zbl0101.03002MR0133304DOI10.1007/BF01451369
  13. Kolster, M., Do, T. Nguyen Quang, Fleckinger, V., 10.1215/S0012-7094-96-08421-5, Duke Math. J. 84 (1996), 679-717. (1996) Zbl0863.19003MR1408541DOI10.1215/S0012-7094-96-08421-5
  14. Kurihara, M., 0747.11055, Compos. Math. 81 (1992), 223-236. (1992) Zbl0747.11055MR1145807DOI0747.11055
  15. Mazur, B., Wiles, A., 10.1007/BF01388599, Invent. Math. 76 (1984), 179-331. (1984) Zbl0545.12005MR0742853DOI10.1007/BF01388599
  16. Neukirch, J., The Beilinson conjecture for algebraic number fields, Beilinson’s Conjectures on Special Values of -Functions Perspectives in Mathematics 4. Academic Press, Boston (1988), 193-247. (1988) Zbl0651.12009MR0944995
  17. Neukirch, J., Schmidt, A., Wingberg, K., 10.1007/978-3-540-37889-1, Grundlehren der Mathematischen Wissenschaften 323. Springer, Berlin (2000). (2000) Zbl0948.11001MR1737196DOI10.1007/978-3-540-37889-1
  18. Nickel, A., 10.1017/S0305004111000193, Math. Proc. Camb. Philos. Soc. 151 (2011), 1-22. (2011) Zbl1254.11096MR2801311DOI10.1017/S0305004111000193
  19. Rapoport, M., Schappacher, N., (eds.), P. Schneider, 10.1016/c2013-0-11352-9, Perspectives in Mathematics 4. Academic Press, Boston (1988). (1988) Zbl0635.00005MR0944987DOI10.1016/c2013-0-11352-9
  20. Siegel, C. L., Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 1970 (1970), 15-56 German. (1970) Zbl0225.10031MR0285488
  21. Sinnott, W., 10.1007/BF01389158, Invent. Math. 62 (1980), 181-234. (1980) Zbl0465.12001MR0595586DOI10.1007/BF01389158
  22. Snaith, V. P., 10.4153/CJM-2006-018-5, Can. J. Math. 58 (2006), 419-448. (2006) Zbl1215.11111MR2209286DOI10.4153/CJM-2006-018-5
  23. Soulé, C., 10.1007/BF01406843, Invent. Math. 55 (1979), 251-295 French. (1979) Zbl0437.12008MR0553999DOI10.1007/BF01406843
  24. Soulé, C., 10.1007/BFb0089530, Algebraic -Theory Lecture Notes in Mathematics 854. Springer, Berlin (1981), 372-401. (1981) Zbl0488.12008MR0618313DOI10.1007/BFb0089530
  25. Soulé, C., 10.1515/crll.1999.095, J. Reine Angew. Math. 517 (1999), 209-221. (1999) Zbl1012.11094MR1728540DOI10.1515/crll.1999.095
  26. Sun, C., 10.48550/arXiv.2112.12314, Available at https://arxiv.org/abs/2112.12314 (2021), 17 pages. (2021) DOI10.48550/arXiv.2112.12314
  27. Tate, J., Les conjectures de Stark sur les fonctions L d’Artin en s = 0 , Progress in Mathematics 47. Birkhäuser, Boston (1984), French. (1984) Zbl0545.12009MR0782485
  28. Viguié, S., 10.1007/s00229-011-0452-y, Manuscr. Math. 136 (2011), 445-460. (2011) Zbl1264.11093MR2844820DOI10.1007/s00229-011-0452-y
  29. Voevodsky, V., 10.4007/annals.2011.174.1.11, Ann. Math. (2) 174 (2011), 401-438. (2011) Zbl1236.14026MR2811603DOI10.4007/annals.2011.174.1.11
  30. Wiles, A., 10.2307/1971468, Ann. Math. (2) 131 (1990), 493-540. (1990) Zbl0719.11071MR1053488DOI10.2307/1971468

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.