A twisted class number formula and Gross's special units over an imaginary quadratic field
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1333-1347
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEl Boukhari, Saad. "A twisted class number formula and Gross's special units over an imaginary quadratic field." Czechoslovak Mathematical Journal 73.4 (2023): 1333-1347. <http://eudml.org/doc/299417>.
@article{ElBoukhari2023,
abstract = {Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\ge 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_\{2n-2\}(O_F)$.},
author = {El Boukhari, Saad},
journal = {Czechoslovak Mathematical Journal},
keywords = {algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture},
language = {eng},
number = {4},
pages = {1333-1347},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A twisted class number formula and Gross's special units over an imaginary quadratic field},
url = {http://eudml.org/doc/299417},
volume = {73},
year = {2023},
}
TY - JOUR
AU - El Boukhari, Saad
TI - A twisted class number formula and Gross's special units over an imaginary quadratic field
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1333
EP - 1347
AB - Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\ge 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$.
LA - eng
KW - algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture
UR - http://eudml.org/doc/299417
ER -
References
top- Borel, A., Cohomologie de et valeurs de fonctions zeta aux points entiers, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977), 613-636 French. (1977) Zbl0382.57027MR0506168
- Bourbaki, N., Elements of Mathematics: Commutative Algebra, Hermann, Paris (1972). (1972) Zbl0279.13001MR0360549
- Gil, J. I. Burgos, 10.1090/crmm/015, CRM Monograph Series 15. AMS, Providence (2002). (2002) Zbl0994.19003MR1869655DOI10.1090/crmm/015
- Deninger, C., 10.2307/1971502, Ann. Math. (2) 132 (1990), 131-158. (1990) Zbl0721.14005MR1059937DOI10.2307/1971502
- Boukhari, S. El, 10.1007/s00229-017-0991-y, Manuscr. Math. 157 (2018), 23-49. (2018) Zbl1414.11138MR3845757DOI10.1007/s00229-017-0991-y
- Boukhari, S. El, 10.1090/proc/15837, Proc. Am. Math. Soc. 150 (2022), 3231-3239. (2022) Zbl1506.11147MR4439448DOI10.1090/proc/15837
- Boukhari, S. El, 10.48550/arXiv.2302.04049, Available at https://arxiv.org/abs/2302.04049 (2023), 17 pages. (2023) DOI10.48550/arXiv.2302.04049
- Flach, M., 10.1090/conm/358, Stark's Conjectures: Recent Work and New Directions Contemporary Mathematics 358. AMS, Providence (2004), 79-125. (2004) Zbl1070.11025MR2088713DOI10.1090/conm/358
- Ghate, E., Vandiver’s conjecture via -theory, Cyclotomic Fields and Related Topics Bhaskaracharya Pratishthana, Pune (2000), 285-298. (2000) Zbl1048.11083MR1802389
- Gross, B. H., 10.4310/PAMQ.2005.v1.n1.a1, Pure Appl. Math. Q. 1 (2005), 1-13. (2005) Zbl1169.11050MR2154331DOI10.4310/PAMQ.2005.v1.n1.a1
- Johnson-Leung, J., 10.1090/conm/606, Women in Numbers 2: Research Directions in Number Theory Contemporary Mathematics 606. AMS, Providence (2013), 1-27. (2013) Zbl1286.11176MR3204289DOI10.1090/conm/606
- Klingen, H., 10.1007/BF01451369, Math. Ann. 145 (1962), 265-272 German. (1962) Zbl0101.03002MR0133304DOI10.1007/BF01451369
- Kolster, M., Do, T. Nguyen Quang, Fleckinger, V., 10.1215/S0012-7094-96-08421-5, Duke Math. J. 84 (1996), 679-717. (1996) Zbl0863.19003MR1408541DOI10.1215/S0012-7094-96-08421-5
- Kurihara, M., 0747.11055, Compos. Math. 81 (1992), 223-236. (1992) Zbl0747.11055MR1145807DOI0747.11055
- Mazur, B., Wiles, A., 10.1007/BF01388599, Invent. Math. 76 (1984), 179-331. (1984) Zbl0545.12005MR0742853DOI10.1007/BF01388599
- Neukirch, J., The Beilinson conjecture for algebraic number fields, Beilinson’s Conjectures on Special Values of -Functions Perspectives in Mathematics 4. Academic Press, Boston (1988), 193-247. (1988) Zbl0651.12009MR0944995
- Neukirch, J., Schmidt, A., Wingberg, K., 10.1007/978-3-540-37889-1, Grundlehren der Mathematischen Wissenschaften 323. Springer, Berlin (2000). (2000) Zbl0948.11001MR1737196DOI10.1007/978-3-540-37889-1
- Nickel, A., 10.1017/S0305004111000193, Math. Proc. Camb. Philos. Soc. 151 (2011), 1-22. (2011) Zbl1254.11096MR2801311DOI10.1017/S0305004111000193
- Rapoport, M., Schappacher, N., (eds.), P. Schneider, 10.1016/c2013-0-11352-9, Perspectives in Mathematics 4. Academic Press, Boston (1988). (1988) Zbl0635.00005MR0944987DOI10.1016/c2013-0-11352-9
- Siegel, C. L., Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 1970 (1970), 15-56 German. (1970) Zbl0225.10031MR0285488
- Sinnott, W., 10.1007/BF01389158, Invent. Math. 62 (1980), 181-234. (1980) Zbl0465.12001MR0595586DOI10.1007/BF01389158
- Snaith, V. P., 10.4153/CJM-2006-018-5, Can. J. Math. 58 (2006), 419-448. (2006) Zbl1215.11111MR2209286DOI10.4153/CJM-2006-018-5
- Soulé, C., 10.1007/BF01406843, Invent. Math. 55 (1979), 251-295 French. (1979) Zbl0437.12008MR0553999DOI10.1007/BF01406843
- Soulé, C., 10.1007/BFb0089530, Algebraic -Theory Lecture Notes in Mathematics 854. Springer, Berlin (1981), 372-401. (1981) Zbl0488.12008MR0618313DOI10.1007/BFb0089530
- Soulé, C., 10.1515/crll.1999.095, J. Reine Angew. Math. 517 (1999), 209-221. (1999) Zbl1012.11094MR1728540DOI10.1515/crll.1999.095
- Sun, C., 10.48550/arXiv.2112.12314, Available at https://arxiv.org/abs/2112.12314 (2021), 17 pages. (2021) DOI10.48550/arXiv.2112.12314
- Tate, J., Les conjectures de Stark sur les fonctions d’Artin en , Progress in Mathematics 47. Birkhäuser, Boston (1984), French. (1984) Zbl0545.12009MR0782485
- Viguié, S., 10.1007/s00229-011-0452-y, Manuscr. Math. 136 (2011), 445-460. (2011) Zbl1264.11093MR2844820DOI10.1007/s00229-011-0452-y
- Voevodsky, V., 10.4007/annals.2011.174.1.11, Ann. Math. (2) 174 (2011), 401-438. (2011) Zbl1236.14026MR2811603DOI10.4007/annals.2011.174.1.11
- Wiles, A., 10.2307/1971468, Ann. Math. (2) 131 (1990), 493-540. (1990) Zbl0719.11071MR1053488DOI10.2307/1971468
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.