Generalized synchronization in the networks with directed acyclic structure
Sergej Čelikovský; Volodymyr Lynnyk; Anna Lynnyk; Branislav Rehák
Kybernetika (2023)
- Volume: 59, Issue: 3, page 437-460
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topČelikovský, Sergej, et al. "Generalized synchronization in the networks with directed acyclic structure." Kybernetika 59.3 (2023): 437-460. <http://eudml.org/doc/299449>.
@article{Čelikovský2023,
abstract = {Generalized synchronization in the direct acyclic networks, i.e. the networks represented by the directed tree, is presented here. Network nodes consist of copies of the so-called generalized Lorenz system with possibly different parameters yet mutually structurally equivalent. The difference in parameters actually requires the generalized synchronization rather than the identical one. As the class of generalized Lorenz systems includes the well-known particular classes such as (classical) Lorenz system, Chen system, or Lü system, all these classes can be synchronized using the presented approach as well. The main theorem is rigorously mathematically formulated and proved in detail. Extensive numerical simulations are included to illustrate and further substantiate these theoretical results. Moreover, during these numerical experiments, the so-called duplicated system approach is used to double-check the generalized synchronization.},
author = {Čelikovský, Sergej, Lynnyk, Volodymyr, Lynnyk, Anna, Rehák, Branislav},
journal = {Kybernetika},
keywords = {generalized Lorenz system; generalized synchronization; chaos; networks},
language = {eng},
number = {3},
pages = {437-460},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generalized synchronization in the networks with directed acyclic structure},
url = {http://eudml.org/doc/299449},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Čelikovský, Sergej
AU - Lynnyk, Volodymyr
AU - Lynnyk, Anna
AU - Rehák, Branislav
TI - Generalized synchronization in the networks with directed acyclic structure
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 3
SP - 437
EP - 460
AB - Generalized synchronization in the direct acyclic networks, i.e. the networks represented by the directed tree, is presented here. Network nodes consist of copies of the so-called generalized Lorenz system with possibly different parameters yet mutually structurally equivalent. The difference in parameters actually requires the generalized synchronization rather than the identical one. As the class of generalized Lorenz systems includes the well-known particular classes such as (classical) Lorenz system, Chen system, or Lü system, all these classes can be synchronized using the presented approach as well. The main theorem is rigorously mathematically formulated and proved in detail. Extensive numerical simulations are included to illustrate and further substantiate these theoretical results. Moreover, during these numerical experiments, the so-called duplicated system approach is used to double-check the generalized synchronization.
LA - eng
KW - generalized Lorenz system; generalized synchronization; chaos; networks
UR - http://eudml.org/doc/299449
ER -
References
top- Abarbanel, H. D. I., Rulkov, N. F., Sushchik, M. M., , Phys. Rev. E 53 (1996), 5, 4528-4535. DOI
- Afraimovich, V. S., Verichev, N. N., Rabinovich, M. I., , Radiophys. Quantum El. 29 (1086), 9, 795-803. MR0877439DOI
- Bao, H., Cao, J., , Nonlinear Anal. Model. 21 (2016), 3, 306-324. MR3457508DOI
- Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C., , Phys. Rep. 366 (2002), 1-2, 1-101. Zbl0995.37022MR1913567DOI
- Boccaletti, S., Pisarchik, A., Genio, C. del, Amann, A., Synchronization: From Coupled Systems to Complex Networks., Cambridge University Press, 2018. MR3823205
- Čelikovský, S., Chen, G., , Int. J. Bifurcat. Chaos 12 (2002), 08, 1789-1812. MR1927413DOI
- Čelikovský, S., Vaněček, A., , Kybernetika 30 (1994), 4, 403-424. Zbl0823.93026MR1303292DOI
- Chen, G., Ueta, T., , Int. J. Bifurcat. Chaos 09 (1999), 07, 1465-1466. Zbl0962.37013MR1729683DOI
- Chen, G., Wang, X., Li, X., Fundamentals of Complex Networks: Models, Structures and Dynamics., Wiley, 2014.
- Fujisaka, H., Yamada, T., , Prog. Theor. Phys. 69 (1983), 1, 32-47. MR0699754DOI
- Khalil, H. K., Nonlinear Systems., Pearson, Upper Saddle River, NJ, 3 edition, 2002. Zbl1194.93083
- Kocarev, L., Parlitz, U., , Phys. Rev. Lett. 76 (1996), 11, 1816-1819. DOI
- Liu, J., Chen, G., Zhao, X., , Fractals 29 (2021), 04, 2150081. DOI
- Lorenz, E. N., , J. Atmos. Sci. 20 (1963), 2, 130-141. MR4021434DOI
- Lü, J., Chen, G., , Int. J. Bifurcat. Chaos 12 (2002), 03, 659-661. Zbl1063.34510MR1894886DOI
- Lynnyk, V., Rehák, B., Čelikovský, S., , In: 8th International Conference on Systems and Control ({ICSC}), IEEE 2019, pp. 251-256. DOI
- Mainieri, R., Rehacek, J., , Phys. Rev. Lett. 82 (1999), 15, 3042-3045. DOI
- Müller, M. A., Martínez-Guerrero, A., Corsi-Cabrera, M., Effenberg, A. O., Friedrich, A., Garcia-Madrid, I., Hornschuh, M., Schmitz, G., Müller, M. F., 10.3389/fnhum.2022.909939, Front. Hum. Neurosci. 16 (2022). DOI10.3389/fnhum.2022.909939
- Pecora, L. M., Carroll, T. L., , Phys. Rev. Lett. 64 (1990), 8), 821-824. Zbl1098.37553MR1038263DOI
- Pikovsky, A. S., , Z. Phys. B Con. Mat. 55 (1984), 2, 149-154. MR0747464DOI
- Pyragas, K., , Phys. Rev. E 54 (1996), 5, R4508-R4511. DOI
- Rehák, B., Lynnyk, V., Decentralized networked stabilization of a nonlinear large system under quantization., In: Proc. 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys 2019), pp. 1-6.
- Rehák, B., Lynnyk, V., , J. Franklin I. 356 (2019), 2, 1088-1112. MR3912566DOI
- Rehák, B., Lynnyk, V., , In: 2019 22nd International Conference on Process Control (PC), IEEE 2019, pp. 68-73. DOI
- Rehák, B., Lynnyk, V., Consensus of a multi-agent systems with heterogeneous delays., Kybernetika (2010), 363-381. MR4103722
- Rehák, B., Lynnyk, V., , Front. Inform. Tech. El. 22 (2021), 1, 97-106. MR4103722DOI
- Rosenblum, M. G., Pikovsky, A. S., Kurths, J., , Phys. Rev. Lett. 76 (1996), 11, 1804-1807. Zbl0898.70015MR1869044DOI
- Rosenblum, M. G., Pikovsky, A. S., Kurths, J., , Phys. Rev. Lett. 78 (1997), 22, 4193-4196. MR1668374DOI
- Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., Abarbanel, H. D. I., , Phys. Rev. E 51 (1995), 2, 980-994. MR1475525DOI
- Wang, Y. W., Guan, Z. H., , Chaos Soliton. Fract. 27 (2006), 1, 97-101. MR2299092DOI
- Zhu, Z., Li, S., Yu, H., A new approach to generalized chaos synchronization based on the stability of the error system., Kybernetika 44 (2008), 8, 492-500. MR2459067
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.