Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes
Kwangil Kim; Unhyok Hong; Kwanhung Ri; Juhyon Yu
Applications of Mathematics (2021)
- Volume: 66, Issue: 4, page 599-617
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKim, Kwangil, et al. "Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes." Applications of Mathematics 66.4 (2021): 599-617. <http://eudml.org/doc/297936>.
@article{Kim2021,
abstract = {We propose a method of constructing convergent high order schemes for Hamilton-Jacobi equations on triangular meshes, which is based on combining a high order scheme with a first order monotone scheme. According to this methodology, we construct adaptive schemes of weighted essentially non-oscillatory type on triangular meshes for nonconvex Hamilton-Jacobi equations in which the first order monotone approximations are occasionally applied near singular points of the solution (discontinuities of the derivative) instead of weighted essentially non-oscillatory approximations. Through detailed numerical experiments, the convergence and effectiveness of the proposed adaptive schemes are demonstrated.},
author = {Kim, Kwangil, Hong, Unhyok, Ri, Kwanhung, Yu, Juhyon},
journal = {Applications of Mathematics},
keywords = {Hamilton-Jacobi equation; first order monotone scheme; high order scheme; weighted essentially non-oscillatory scheme; adaptive scheme; convergence},
language = {eng},
number = {4},
pages = {599-617},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes},
url = {http://eudml.org/doc/297936},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Kim, Kwangil
AU - Hong, Unhyok
AU - Ri, Kwanhung
AU - Yu, Juhyon
TI - Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 599
EP - 617
AB - We propose a method of constructing convergent high order schemes for Hamilton-Jacobi equations on triangular meshes, which is based on combining a high order scheme with a first order monotone scheme. According to this methodology, we construct adaptive schemes of weighted essentially non-oscillatory type on triangular meshes for nonconvex Hamilton-Jacobi equations in which the first order monotone approximations are occasionally applied near singular points of the solution (discontinuities of the derivative) instead of weighted essentially non-oscillatory approximations. Through detailed numerical experiments, the convergence and effectiveness of the proposed adaptive schemes are demonstrated.
LA - eng
KW - Hamilton-Jacobi equation; first order monotone scheme; high order scheme; weighted essentially non-oscillatory scheme; adaptive scheme; convergence
UR - http://eudml.org/doc/297936
ER -
References
top- Abgrall, R., 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B, Commun. Pure Appl. Math. 49 (1996), 1339-1373. (1996) Zbl0870.65116MR1414589DOI10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B
- Bokanowski, O., Falcone, M., Sahu, S., 10.1137/140998482, SIAM J. Sci. Comput. 38 (2016), A171--A195. (2016) Zbl1407.65093MR3449908DOI10.1137/140998482
- Cai, X., Qiu, J., Qiu, J., 10.1007/s10915-017-0525-5, J. Sci. Comput. 75 (2018), 65-82. (2018) Zbl1393.65021MR3770312DOI10.1007/s10915-017-0525-5
- Crandall, M. G., Lions, P.-L., 10.1090/S0025-5718-1984-0744921-8, Math. Comput. 43 (1984), 1-19. (1984) Zbl0556.65076MR0744921DOI10.1090/S0025-5718-1984-0744921-8
- Feng, H., Huang, C., Wang, R., 10.1016/j.amc.2014.01.061, Appl. Math. Comput. 232 (2014), 453-468. (2014) Zbl1410.65306MR3181284DOI10.1016/j.amc.2014.01.061
- Gottlieb, S., Shu, C.-W., Tadmor, E., 10.1137/S003614450036757X, SIAM Rev. 43 (2001), 89-112. (2001) Zbl0967.65098MR1854647DOI10.1137/S003614450036757X
- Huang, C., 10.1016/j.amc.2016.05.022, Appl. Math. Comput. 290 (2016), 21-32. (2016) Zbl1410.65313MR3523409DOI10.1016/j.amc.2016.05.022
- Jiang, G.-S., Peng, D., 10.1137/S106482759732455X, SIAM J. Sci. Comput. 21 (2000), 2126-2143. (2000) Zbl0957.35014MR1762034DOI10.1137/S106482759732455X
- Kim, K., Li, Y., 10.1007/s10915-014-9955-5, J. Sci. Comput. 65 (2015), 110-137. (2015) Zbl1408.65053MR3394440DOI10.1007/s10915-014-9955-5
- Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T., 10.1137/040612002, SIAM J. Sci. Comput. 28 (2006), 2229-2247. (2006) Zbl1126.65075MR2272259DOI10.1137/040612002
- Oberman, A. M., Salvador, T., 10.1016/j.jcp.2014.12.039, J. Comput. Phys. 284 (2015), 367-388. (2015) Zbl1352.65422MR3303624DOI10.1016/j.jcp.2014.12.039
- Osher, S., Shu, C.-W., 10.1137/0728049, SIAM J. Numer. Anal. 28 (1991), 907-922. (1991) Zbl0736.65066MR1111446DOI10.1137/0728049
- Qiu, J., Shu, C.-W., 10.1016/j.jcp.2004.10.003, J. Comput. Phys. 204 (2005), 82-99. (2005) Zbl1070.65078MR2121905DOI10.1016/j.jcp.2004.10.003
- Qiu, J.-M., Shu, C.-W., 10.1137/070687487, SIAM J. Sci. Comput. 31 (2008), 584-607. (2008) Zbl1186.65123MR2460790DOI10.1137/070687487
- Shu, C.-W., 10.1137/070679065, SIAM Rev. 51 (2009), 82-126. (2009) Zbl1160.65330MR2481112DOI10.1137/070679065
- Zhang, Y.-T., Shu, C.-W., 10.1137/S1064827501396798, SIAM J. Sci. Comput. 24 (2003), 1005-1030. (2003) Zbl1034.65051MR1950522DOI10.1137/S1064827501396798
- Zhu, J., Qiu, J., 10.1016/j.jcp.2013.07.030, J. Comput. Phys. 254 (2013), 76-92. (2013) Zbl1349.65364MR3143358DOI10.1016/j.jcp.2013.07.030
- Zhu, J., Qiu, J., 10.1002/num.22133, Numer. Method Partial Differ. Equations 33 (2017), 1095-1113. (2017) Zbl1371.65089MR3652179DOI10.1002/num.22133
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.