On the meromorphic solutions of a certain type of nonlinear difference-differential equation
Mathematica Bohemica (2023)
- Volume: 148, Issue: 1, page 73-94
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMajumder, Sujoy, and Mahato, Lata. "On the meromorphic solutions of a certain type of nonlinear difference-differential equation." Mathematica Bohemica 148.1 (2023): 73-94. <http://eudml.org/doc/299542>.
@article{Majumder2023,
abstract = {The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation \[ f^\{n\}(z)+P\_\{d\}(z,f)=p\_\{1\}(z)\{\rm e\}^\{\alpha \_\{1\}(z)\}+p\_\{2\}(z)\{\rm e\}^\{\alpha \_\{2\}(z)\}, \]
where $P_d(z,f)$ is a difference-differential polynomial in $f(z)$ of degree $d\le n-1$ with small functions of $f(z)$ as its coefficients, $p_1$, $p_2$ are nonzero rational functions and $\alpha _1$, $\alpha _2$ are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.},
author = {Majumder, Sujoy, Mahato, Lata},
journal = {Mathematica Bohemica},
keywords = {nonlinear differential equation; differential polynomial; Nevanlinna's value distribution theory},
language = {eng},
number = {1},
pages = {73-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the meromorphic solutions of a certain type of nonlinear difference-differential equation},
url = {http://eudml.org/doc/299542},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Majumder, Sujoy
AU - Mahato, Lata
TI - On the meromorphic solutions of a certain type of nonlinear difference-differential equation
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 73
EP - 94
AB - The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation \[ f^{n}(z)+P_{d}(z,f)=p_{1}(z){\rm e}^{\alpha _{1}(z)}+p_{2}(z){\rm e}^{\alpha _{2}(z)}, \]
where $P_d(z,f)$ is a difference-differential polynomial in $f(z)$ of degree $d\le n-1$ with small functions of $f(z)$ as its coefficients, $p_1$, $p_2$ are nonzero rational functions and $\alpha _1$, $\alpha _2$ are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.
LA - eng
KW - nonlinear differential equation; differential polynomial; Nevanlinna's value distribution theory
UR - http://eudml.org/doc/299542
ER -
References
top- Halburd, R., Korhonen, R., Tohge, K., 10.1090/S0002-9947-2014-05949-7, Trans. Am. Math. Soc. 366 (2014), 4267-4298. (2014) Zbl1298.32012MR3206459DOI10.1090/S0002-9947-2014-05949-7
- Hayman, W. K., Meromorphic Functions, Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). (1964) Zbl0115.06203MR0164038
- Heittokangas, J., Korhonen, R., Laine, I., 10.1017/S000497270004017X, Bull. Aust. Math. Soc. 66 (2002), 331-343. (2002) Zbl1047.34101MR1932356DOI10.1017/S000497270004017X
- Laine, I., 10.1515/9783110863147, de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). (1993) Zbl0784.30002MR1207139DOI10.1515/9783110863147
- Li, P., 10.1016/j.jmaa.2010.09.026, J. Math. Anal. Appl. 375 (2011), 310-319. (2011) Zbl1206.30046MR2735715DOI10.1016/j.jmaa.2010.09.026
- Li, P., Yang, C.-C., 10.1016/j.jmaa.2005.07.066, J. Math. Anal. Appl. 320 (2006), 827-835. (2006) Zbl1100.34066MR2225998DOI10.1016/j.jmaa.2005.07.066
- Liao, L.-W., Yang, C.-C., Zhang, J.-J., 10.5186/aasfm.2013.3840, Ann. Acad. Sci. Fenn., Math. 38 (2013), 581-593. (2013) Zbl1303.30029MR3113096DOI10.5186/aasfm.2013.3840
- Lü, W., Wu, L., Wang, D., Yang, C.-C., 10.1515/math-2018-0071, Open Math. 16 (2018), 806-815. (2018) Zbl1412.34239MR3830193DOI10.1515/math-2018-0071
- Yang, C.-C., 10.1007/BF01110921, Math. Z. 125 (1972), 107-112. (1972) Zbl0217.38402MR0294642DOI10.1007/BF01110921
- Yang, C.-C., Li, P., 10.1007/s00013-003-4796-8, Arch. Math. 82 (2004), 442-448. (2004) Zbl1052.34083MR2061450DOI10.1007/s00013-003-4796-8
- Yang, C.-C., Yi, H.-X., 10.1007/978-94-017-3626-8, Mathematics and its Applications (Dordrecht) 557. Kluwer Academic, Dordrecht (2003). (2003) Zbl1070.30011MR2105668DOI10.1007/978-94-017-3626-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.