Displaying similar documents to “On the meromorphic solutions of a certain type of nonlinear difference-differential equation”

Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial

Pulak Sahoo (2016)

Mathematica Bohemica

Similarity:

Let k be a nonnegative integer or infinity. For a { } we denote by E k ( a ; f ) the set of all a -points of f where an a -point of multiplicity m is counted m times if m k and k + 1 times if m > k . If E k ( a ; f ) = E k ( a ; g ) then we say that f and g share the value a with weight k . Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to...

Meromorphic function sharing a small function with a linear differential polynomial

Indrajit Lahiri, Amit Sarkar (2016)

Mathematica Bohemica

Similarity:

The problem of uniqueness of an entire or a meromorphic function when it shares a value or a small function with its derivative became popular among the researchers after the work of Rubel and Yang (1977). Several authors extended the problem to higher order derivatives. Since a linear differential polynomial is a natural extension of a derivative, in the paper we study the uniqueness of a meromorphic function that shares one small function CM with a linear differential polynomial, and...

Finite logarithmic order meromorphic solutions of linear difference/differential-difference equations

Abdelkader Dahmani, Benharrat Belaidi (2025)

Mathematica Bohemica

Similarity:

Firstly we study the growth of meromorphic solutions of linear difference equation of the form A k ( z ) f ( z + c k ) + + A 1 ( z ) f ( z + c 1 ) + A 0 ( z ) f ( z ) = F ( z ) , where A k ( z ) , ... , A 0 ( z ) and F ( z ) are meromorphic functions of finite logarithmic order, c i ( i = 1 , ... , k , k ) are distinct nonzero complex constants. Secondly, we deal with the growth of solutions of differential-difference equation of the form i = 0 n j = 0 m A i j ( z ) f ( j ) ( z + c i ) = F ( z ) , where A i j ( z ) ( i = 0 , 1 , ... , n , j = 0 , 1 , ... , m , n , m ) and F ( z ) are meromorphic functions of finite logarithmic order, c i ( i = 0 , ... , n ) are distinct complex constants. We extend some previous results...

Universal sequences for Zalcman’s Lemma and Q m -normality

Shahar Nevo (2005)

Annales Polonici Mathematici

Similarity:

We prove the existence of sequences ϱ n = 1 , ϱₙ → 0⁺, and z n = 1 , |zₙ| = 1/2, such that for every α ∈ ℝ and for every meromorphic function G(z) on ℂ, there exists a meromorphic function F ( z ) = F G , α ( z ) on ℂ such that ϱ α F ( n z + n ϱ ζ ) converges to G(ζ) uniformly on compact subsets of ℂ in the spherical metric. As a result, we construct a family of functions meromorphic on the unit disk that is Q m -normal for no m ≥ 1 and on which an extension of Zalcman’s Lemma holds.

Pull-back of currents by meromorphic maps

Tuyen Trung Truong (2013)

Bulletin de la Société Mathématique de France

Similarity:

Let  X and Y be compact Kähler manifolds, and let  f : X Y be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator f for currents of bidegrees ( p , p ) of finite order on  Y (and thus forcurrent, since Y is compact). This operator has good properties as may be expected. Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony,...

Twists and resonance of L -functions, I

Jerzy Kaczorowski, Alberto Perelli (2016)

Journal of the European Mathematical Society

Similarity:

We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents 1 / d of the L -functions of any degree d 1 in the extended Selberg class. In particular, this solves the resonance problem in all such cases.

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Polynomials with values which are powers of integers

Rachid Boumahdi, Jesse Larone (2018)

Archivum Mathematicum

Similarity:

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form Q ( m ) , where Q is a polynomial with integral coefficients, then P ( x ) = Q ( R ( x ) ) for some polynomial R . In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m q where q is an integer greater than 1, then P ( x ) = ( R ( x ) ) q for some polynomial R ( x ) .

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

Polynomials, sign patterns and Descartes' rule of signs

Vladimir Petrov Kostov (2019)

Mathematica Bohemica

Similarity:

By Descartes’ rule of signs, a real degree d polynomial P with all nonvanishing coefficients with c sign changes and p sign preservations in the sequence of its coefficients ( c + p = d ) has pos c positive and ¬ p negative roots, where pos c ( mod 2 ) and ¬ p ( mod 2 ) . For 1 d 3 , for every possible choice of the sequence of signs of coefficients of P (called sign pattern) and for every pair ( pos , neg ) satisfying these conditions there exists a polynomial P with exactly pos positive and exactly ¬ negative roots (all of them simple). For d 4 ...