A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues

Milan Kučera

Czechoslovak Mathematical Journal (1982)

  • Volume: 32, Issue: 2, page 197-207
  • ISSN: 0011-4642

How to cite

top

Kučera, Milan. "A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues." Czechoslovak Mathematical Journal 32.2 (1982): 197-207. <http://eudml.org/doc/13306>.

@article{Kučera1982,
author = {Kučera, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {eigenvalue problem; variational inequality; branch of solutions},
language = {eng},
number = {2},
pages = {197-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues},
url = {http://eudml.org/doc/13306},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Kučera, Milan
TI - A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues
JO - Czechoslovak Mathematical Journal
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 2
SP - 197
EP - 207
LA - eng
KW - eigenvalue problem; variational inequality; branch of solutions
UR - http://eudml.org/doc/13306
ER -

References

top
  1. E. N. Dancer, 10.1512/iumj.1974.23.23087, Indiana Univ. Math. Journ. 23, (1974), 1069-1076. (1974) Zbl0276.47051MR0348567DOI10.1512/iumj.1974.23.23087
  2. M. Kučera, A new method for obtaining eigenvalues of variational inequalities of the special type. Preliminary communication, Comment. Math. Univ. Carol. 18, (1977), 205 - 210. (1977) MR0435909
  3. M. Kučera, A new method for obtaining eigenvalues of variational inequalities. Branches of eigenvalues of the equation with the penalty in a special case, Časopis pro pěstování matematiky, 104 (1979), 295-310. (1979) MR0543230
  4. M. Kučera, A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory, Časopis pro pěstování matematiky, 104 (1979), 389-411. (1979) MR0553173
  5. M. Kučera, Bifurcation points of variational inequalities, Czechoslovak Math. Journ. 32 (107), (1982), 208-226. (1982) MR0654057
  6. M. Kučera J. Nečas J. Souček, The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory, In "Nonlinear Analysis", Academic Press, New York-San Francisco-London 1978. (1978) MR0513782
  7. E. Miersemann, 10.1002/mana.19780850116, Math. Nachr. 85 (1978), 195-213. (1978) Zbl0324.49036MR0517651DOI10.1002/mana.19780850116
  8. E. Miersemann, Höhere Eigenwerte von Variationsungleichungen, To appear in Beiträge zur Analysis. Zbl0475.49016MR0663272
  9. G. T. Whyburn, Topological Analysis, Princeton Univ. Press, Princeton, N.J., 1958. (1958) Zbl0080.15903MR0099642

Citations in EuDML Documents

top
  1. Milan Kučera, Bifurcation points of variational inequalities
  2. Erich Miersemann, On higher eigenvalues of variational inequalities
  3. Milan Kučera, Jiří Neustupa, Destabilizing effect of unilateral conditions in reaction-diffusion systems
  4. Pavel Drábek, Milan Kučera, Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions
  5. Milan Kučera, A global continuation theorem for obtaining eigenvalues and bifurcation points
  6. Pavel Drábek, Milan Kučera, Marta Míková, Bifurcation points of reaction-diffusion systems with unilateral conditions
  7. Claudio Saccon, Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate
  8. Marco Degiovanni, Bifurcation for odd nonlinear elliptic variational inequalities
  9. Marco Degiovanni, Bifurcation problems for nonlinear elliptic variational inequalities
  10. Pavol Quittner, Solvability and multiplicity results for variational inequalities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.