On modeling flow between adjacent surfaces where the fluid is governed by implicit algebraic constitutive relations

Andreas Almqvist; Evgeniya Burtseva; Kumbakonam R. Rajagopal; Peter Wall

Applications of Mathematics (2024)

  • Volume: 69, Issue: 6, page 725-746
  • ISSN: 0862-7940

Abstract

top
We consider pressure-driven flow between adjacent surfaces, where the fluid is assumed to have constant density. The main novelty lies in using implicit algebraic constitutive relations to describe the fluid's response to external stimuli, enabling the modeling of fluids whose responses cannot be accurately captured by conventional methods. When the implicit algebraic constitutive relations cannot be solved for the Cauchy stress in terms of the symmetric part of the velocity gradient, the traditional approach of inserting the expression for the Cauchy stress into the equation for the balance of linear momentum to derive the governing equation for the velocity becomes inapplicable. Instead, a non-standard system of first-order equations governs the flow. This system is highly complex, making it important to develop simplified models. Our primary contribution is the development of a framework for achieving this. Additionally, we apply our findings to a fluid that exhibits an S-shaped curve in the shear stress versus shear rate plot, as observed in some colloidal solutions.

How to cite

top

Almqvist, Andreas, et al. "On modeling flow between adjacent surfaces where the fluid is governed by implicit algebraic constitutive relations." Applications of Mathematics 69.6 (2024): 725-746. <http://eudml.org/doc/299606>.

@article{Almqvist2024,
abstract = {We consider pressure-driven flow between adjacent surfaces, where the fluid is assumed to have constant density. The main novelty lies in using implicit algebraic constitutive relations to describe the fluid's response to external stimuli, enabling the modeling of fluids whose responses cannot be accurately captured by conventional methods. When the implicit algebraic constitutive relations cannot be solved for the Cauchy stress in terms of the symmetric part of the velocity gradient, the traditional approach of inserting the expression for the Cauchy stress into the equation for the balance of linear momentum to derive the governing equation for the velocity becomes inapplicable. Instead, a non-standard system of first-order equations governs the flow. This system is highly complex, making it important to develop simplified models. Our primary contribution is the development of a framework for achieving this. Additionally, we apply our findings to a fluid that exhibits an S-shaped curve in the shear stress versus shear rate plot, as observed in some colloidal solutions.},
author = {Almqvist, Andreas, Burtseva, Evgeniya, Rajagopal, Kumbakonam R., Wall, Peter},
journal = {Applications of Mathematics},
keywords = {implicit algebraic constitutive relation; flow between adjacent surfaces},
language = {eng},
number = {6},
pages = {725-746},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On modeling flow between adjacent surfaces where the fluid is governed by implicit algebraic constitutive relations},
url = {http://eudml.org/doc/299606},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Almqvist, Andreas
AU - Burtseva, Evgeniya
AU - Rajagopal, Kumbakonam R.
AU - Wall, Peter
TI - On modeling flow between adjacent surfaces where the fluid is governed by implicit algebraic constitutive relations
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 6
SP - 725
EP - 746
AB - We consider pressure-driven flow between adjacent surfaces, where the fluid is assumed to have constant density. The main novelty lies in using implicit algebraic constitutive relations to describe the fluid's response to external stimuli, enabling the modeling of fluids whose responses cannot be accurately captured by conventional methods. When the implicit algebraic constitutive relations cannot be solved for the Cauchy stress in terms of the symmetric part of the velocity gradient, the traditional approach of inserting the expression for the Cauchy stress into the equation for the balance of linear momentum to derive the governing equation for the velocity becomes inapplicable. Instead, a non-standard system of first-order equations governs the flow. This system is highly complex, making it important to develop simplified models. Our primary contribution is the development of a framework for achieving this. Additionally, we apply our findings to a fluid that exhibits an S-shaped curve in the shear stress versus shear rate plot, as observed in some colloidal solutions.
LA - eng
KW - implicit algebraic constitutive relation; flow between adjacent surfaces
UR - http://eudml.org/doc/299606
ER -

References

top
  1. Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P., 10.1177/1350650120973792, Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 235 (2021), 1692-1702 9999DOI99999 10.1177/1350650120973792 . (2021) DOI10.1177/1350650120973792
  2. Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P., 10.1177/13506501209738, Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 235 (2021), 1703-1718. (2021) DOI10.1177/13506501209738
  3. Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P., 10.1016/j.apples.2023.100145, Appl. Eng. Sci. 15 (2023), Article ID 100145, 9 pages. (2023) DOI10.1016/j.apples.2023.100145
  4. Almqvist, A., Burtseva, E., Rajagopal, K. R., Wall, P., On lower-dimensional models of thin film flow. Part C. Derivation of a Reynolds type of equation for fluids with temperature and pressure dependent viscosity, Proc. Inst. Mech. Eng., Part J, J. Eng. Tribology 237 (2023), 514-526 9999DOI99999 10.1177/135065012211352 . (2023) 
  5. Ansari, S., Rashid, M. A. I., Waghmare, P. R., Nobes, D. S., Measurement of the fow behavior index of Newtonian and shear-thinning fluids via analysis of the flow velocity characteristics in a mini-channel, SN Appl. Sci. 2 (2020), Article ID 1787, 15 pages 9999DOI99999 10.1007/s42452-020-03561-w . (2020) 
  6. Bingham, E. C., Fluidity and Plasticity, McGraw-Hill, New York (1922) . 
  7. Blechta, J., Málek, J., Rajagopal, K. R., On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion, SIAM J. Math. Anal. 52 (2020), 1232-1289 9999DOI99999 10.1137/19M1244895 . (2020) Zbl1432.76075MR4076814
  8. Boltenhagen, P., Hu, Y., Matthys, E. F., Pine, D. J., Observation of bulk phase separation and coexistence in a sheared micellar solution, Phys. Rev. Lett. 79 (1997), 2359-2362 9999DOI99999 10.1103/PhysRevLett.79.2359 . (1997) 
  9. Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A., 10.1515/ACV.2009.006, Adv. Calc. Var. 2 (2009), 109-136. (2009) Zbl1233.35164MR2523124DOI10.1515/ACV.2009.006
  10. Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A., 10.1137/110830289, SIAM J. Math. Anal. 44 (2012), 2756-2801. (2012) Zbl1256.35074MR3023393DOI10.1137/110830289
  11. Diening, L., Kreuzer, C., Süli, E., Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, SIAM J. Numer. Anal. 51 (2013), 984-1015 9999DOI99999 10.1137/120873133 . (2013) Zbl1268.76030MR3035482
  12. Dowson, D., A generalized Reynolds equation for fluid-film lubrication, Int. J. Mech. Sci. 4 (1962), 159-170 9999DOI99999 10.1016/S0020-7403(62)80038-1 . (1962) 
  13. Fabricius, J., Manjate, S., Wall, P., Error estimates for pressure-driven Hele-Shaw flow, Q. Appl. Math. 80 (2022), 575-595 9999DOI99999 10.1090/qam/1619 . (2022) Zbl1490.76020MR4453782
  14. Fabricius, J., Manjate, S., Wall, P., On pressure-driven Hele-Shaw flow of power-law fluids, Appl. Anal. 101 (2022), 5107-5137 9999DOI99999 10.1080/00036811.2021.1880570 . (2022) Zbl1500.76017MR4475758
  15. Fabricius, J., Miroshnikova, E., Tsandzana, A., Wall, P., Pressure-driven flow in thin domains, Asymptotic Anal. 116 (2020), 1-26 9999DOI99999 10.3233/ASY-191535 . (2020) Zbl1442.35335MR4044383
  16. Farrell, P. E., Gazca-Orozco, P. A., An augmented Lagrangian preconditioner for implicitly constituted non-Newtonian incompressible flow, SIAM J. Sci. Comput. 42 (2020), B1329–B1349 9999DOI99999 10.1137/20M1336618 . (2020) Zbl1458.65147MR4169754
  17. Farrell, P. E., Gazca-Orozco, P. A., Süli, E., Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation, SIAM J. Numer. Anal. 58 (2020), 757-787 9999DOI99999 10.1137/19M125738X . (2020) Zbl1434.76065MR4066569
  18. Gazca-Orozco, P. A., A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow, ESAIM, Math. Model. Numer. Anal. 55 (2021), 2679-2703 9999DOI99999 10.1051/m2an/2021068 . (2021) Zbl1483.65182MR4337453
  19. Grob, M., Heussinger, C., Zippelius, A., Jamming of frictional particles: A nonequilibrium first-order phase transition, Phys. Rev. E 89 (2014), Article ID 050201, 4 pages 9999DOI99999 10.1103/PhysRevE.89.050201 . (2014) 
  20. Gustafsson, T., Rajagopal, K. R., Stenberg, R., Videman, J., Nonlinear Reynolds equation for hydrodynamic lubrication, Appl. Math. Modelling 39 (2015), 5299-5309 9999DOI99999 10.1016/j.apm.2015.03.028 . (2015) Zbl1443.76037MR3354905
  21. Herschel, W. H., Bulkley, R., 10.1007/BF01432034, Kolloid-Zeit. 39 (1926), 291-300 German. (1926) DOI10.1007/BF01432034
  22. Hu, Y. T., Boltenhagen, P., Matthys, E., Pine, D. J., 10.1122/1.550917, J. Rheol. 42 (1998), 1209-1226. (1998) DOI10.1122/1.550917
  23. Hu, Y. T., Boltenhagen, P., Pine, D. J., Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions, J. Rheol. 42 (1998), 1185-1208 9999DOI99999 10.1122/1.550926 . (1998) 
  24. Lanzendörfer, M., Málek, J., Rajagopal, K. R., Numerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearing, Meccanica 53 (2018), 209-228 9999DOI99999 10.1007/s11012-017-0731-0 . (2018) MR3760916
  25. Lanzendörfer, M., Stebel, J., 10.1016/j.matcom.2011.03.011, Math. Comput. Simul. 81 (2011), 2456-2470. (2011) Zbl1237.76038MR2811797DOI10.1016/j.matcom.2011.03.011
  26. Roux, C. Le, Rajagopal, K. R., Shear flows of a new class of power-law fluids, Appl. Math., Praha 58 (2013), 153-177 9999DOI99999 10.1007/s10492-013-0008-4 . (2013) Zbl1274.76039MR3034820
  27. Málek, J., Průša, V., Rajagopal, K. R., Generalizations of the Navier-Stokes fluid from a new perspective, Int. J. Eng. Sci. 48 (2010), 1907-1924 9999DOI99999 10.1016/j.ijengsci.2010.06.013 . (2010) Zbl1231.76073MR2778752
  28. Mari, R., Seto, R., Morris, J. F., Denn, M. M., Nonmonotonic flow curves of shear thickening suspensions, Phys. Rev. E 91 (2015), Article ID 052302, 6 pages 9999DOI99999 10.1103/PhysRevE.91.052302 . (2015) 
  29. Pereira, B. M. M., Dias, G. A. S., Cal, F. S., Rajagopal, K. R., Videman, J. H., Lubrication approximation for fluids with shear-dependent viscosity, Fluids 4 (2019), Article ID 98, 17 pages 9999DOI99999 10.3390/fluids4020098 . (2019) 
  30. Perlácová, T., Průša, V., Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids, J. Non-Newton. Fluid Mech. 216 (2015), 13-21 9999DOI99999 10.1016/j.jnnfm.2014.12.006 . (2015) MR3441833
  31. Rajagopal, K. R., On implicit constitutive theories, Appl. Math., Praha 48 (2003), 279-319 9999DOI99999 10.1023/A:1026062615145 . (2003) Zbl1099.74009MR1994378
  32. Rajagopal, K. R., On implicit constitutive theories for fluids, J. Fluid Mech. 550 (2006), 243-249 9999DOI99999 10.1017/S0022112005008025 . (2006) Zbl1097.76009MR2263984
  33. Rajagopal, K. R., A review of implicit algebraic constitutive relations for describing the response of nonlinear fluids, C. R., Méc., Acad. Sci. Paris 351 (2023), 703-720 9999DOI99999 10.5802/crmeca.180 . (2023) 
  34. Spencer, A. J. M., Theory of invariants, Continuum Physics. Vol. 1 Academic Press, New York (1971), 239-353 9999DOI99999 10.1016/B978-0-12-240801-4.50008-X . (1971) 
  35. Süli, E., Tscherpel, T., 10.1093/imanum/dry097, IMA J. Numer. Anal. 40 (2020), 801-849. (2020) Zbl1464.65131MR4092271DOI10.1093/imanum/dry097

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.