Linear congruences and a conjecture of Bibak
Chinnakonda Gnanamoorthy Karthick Babu; Ranjan Bera; Balasubramanian Sury
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1185-1206
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBabu, Chinnakonda Gnanamoorthy Karthick, Bera, Ranjan, and Sury, Balasubramanian. "Linear congruences and a conjecture of Bibak." Czechoslovak Mathematical Journal 74.4 (2024): 1185-1206. <http://eudml.org/doc/299651>.
@article{Babu2024,
abstract = {We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences $\sum _\{i=1\}^k a_i x_i \equiv b \hspace\{4.44443pt\}(\@mod \; n)$. In particular, we obtain explicit expressions for the number of solutions, where $x_i$’s are squares modulo $n$. In addition, we obtain expressions for the number of solutions with order restrictions $x_1 \ge \cdots \ge x_k$ or with strict order restrictions $x_1> \cdots > x_k$ in some special cases. In these results, the expressions for the number of solutions involve Ramanujan sums and are obtained using their properties.},
author = {Babu, Chinnakonda Gnanamoorthy Karthick, Bera, Ranjan, Sury, Balasubramanian},
journal = {Czechoslovak Mathematical Journal},
keywords = {system of congruence; restricted linear congruence; Ramanujan sum; discrete Fourier transform},
language = {eng},
number = {4},
pages = {1185-1206},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear congruences and a conjecture of Bibak},
url = {http://eudml.org/doc/299651},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Babu, Chinnakonda Gnanamoorthy Karthick
AU - Bera, Ranjan
AU - Sury, Balasubramanian
TI - Linear congruences and a conjecture of Bibak
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1185
EP - 1206
AB - We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences $\sum _{i=1}^k a_i x_i \equiv b \hspace{4.44443pt}(\@mod \; n)$. In particular, we obtain explicit expressions for the number of solutions, where $x_i$’s are squares modulo $n$. In addition, we obtain expressions for the number of solutions with order restrictions $x_1 \ge \cdots \ge x_k$ or with strict order restrictions $x_1> \cdots > x_k$ in some special cases. In these results, the expressions for the number of solutions involve Ramanujan sums and are obtained using their properties.
LA - eng
KW - system of congruence; restricted linear congruence; Ramanujan sum; discrete Fourier transform
UR - http://eudml.org/doc/299651
ER -
References
top- Bibak, K., 10.1016/j.disc.2019.111690, Discrete Math. 343 (2020), Article ID 111690, 4 pages. (2020) Zbl1447.11003MR4040063DOI10.1016/j.disc.2019.111690
- Bibak, K., Kapron, B. M., Srinivasan, V., 10.1016/j.nuclphysb.2016.07.028, Nucl. Phys., B 910 (2016), 712-723. (2016) Zbl1345.81096MR3535838DOI10.1016/j.nuclphysb.2016.07.028
- Bibak, K., Kapron, B. M., Srinivasan, V., 10.1007/s10623-017-0428-3, Des. Codes Cryptography 86 (2018), 1893-1904. (2018) Zbl1411.11035MR3816205DOI10.1007/s10623-017-0428-3
- Bibak, K., Kapron, B. M., Srinivasan, V., 10.1016/j.disc.2019.06.016, Discrete Math. 342 (2019), 3057-3061. (2019) Zbl1420.11006MR3996744DOI10.1016/j.disc.2019.06.016
- Bibak, K., Kapron, B. M., Srinivasan, V., Tauraso, R., Tóth, L., 10.1016/j.jnt.2016.07.018, J. Number Theory 171 (2017), 128-144. (2017) Zbl1353.11067MR3556678DOI10.1016/j.jnt.2016.07.018
- Bibak, K., Kapron, B. M., Srinivasan, V., Tóth, L., 10.1142/S0129054118500089, Int. J. Found. Comput. Sci. 29 (2018), 357-375. (2018) Zbl1391.94730MR3799234DOI10.1142/S0129054118500089
- Bibak, K., Milenkovic, O., 10.1109/TCOMM.2018.2886354, IEEE Trans. Commun. 67 (2019), 1809-1816. (2019) DOI10.1109/TCOMM.2018.2886354
- Brauer, A., Lösung der Aufgabe 30, Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94 German 9999JFM99999 52.0139.03. (1926)
- Calderón, C., Grau, J. M., Oller-Marcén, A. M., Tóth, L., 10.5486/PMD.2015.7098, Publ. Math. Debr. 87 (2015), 133-145. (2015) Zbl1363.11004MR3367916DOI10.5486/PMD.2015.7098
- Cheng, Q., Murray, E., 10.1007/978-3-540-72504-6_27, Theory and Applications of Models of Computation Lecture Notes in Computer Science 4484. Springer, Berlin (2007), 296-305. (2007) Zbl1198.94189MR2374319DOI10.1007/978-3-540-72504-6_27
- Cohen, E., 10.1073/pnas.41.11.939, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. (1955) Zbl0066.29203MR0075230DOI10.1073/pnas.41.11.939
- Dickson, L. E., History of the Theory of Numbers. II. Diophantine Analysis, Chelsea Publishing, New York (1966). (1966) Zbl1214.11002MR0245500
- Grau, J. M., Oller-Marcén, A. M., 10.1016/j.jnt.2018.09.015, J. Number Theory 200 (2019), 427-440. (2019) Zbl1418.11056MR3944446DOI10.1016/j.jnt.2018.09.015
- Grynkiewicz, D. J., Philipp, A., Ponomarenko, V., 10.1007/s11856-012-0119-8, Isr. J. Math. 193 (2013), 359-398. (2013) Zbl1316.11010MR3038556DOI10.1007/s11856-012-0119-8
- Gupta, H., 10.6028/jres.074B.001, J. Res. Natl. Bur. Stand., Sect. B 74 (1970), 1-29. (1970) Zbl0203.30701MR0271055DOI10.6028/jres.074B.001
- Hull, R., 10.1090/S0002-9947-1932-1501668-0, Trans. Am. Math. Soc. 34 (1932), 908-937. (1932) Zbl0005.34501MR1501668DOI10.1090/S0002-9947-1932-1501668-0
- Ireland, K., Rosen, M., 10.1007/978-1-4757-2103-4, Graduate Texts in Mathematics 84. Springer, New York (1990). (1990) Zbl0712.11001MR1070716DOI10.1007/978-1-4757-2103-4
- Jacobson, D., Williams, K. S., 10.1215/S0012-7094-72-03959-2, Duke Math. J. 39 (1972), 521-527. (1972) Zbl0248.20018MR0302464DOI10.1215/S0012-7094-72-03959-2
- Lehmer, D. N., 10.1080/00029890.1913.11997942, Am. Math. Mon. 20 (1913), 148-157 9999JFM99999 44.0248.09. (1913) MR1517830DOI10.1080/00029890.1913.11997942
- Li, J., Wan, D., 10.1016/j.ffa.2008.05.003, Finite Fields Appl. 14 (2008), 911-929. (2008) Zbl1189.11058MR2457537DOI10.1016/j.ffa.2008.05.003
- Li, J., Wan, D., 10.1016/j.jcta.2011.07.003, J. Comb. Theory, Ser. A 119 (2012), 170-182. (2012) Zbl1229.05289MR2844090DOI10.1016/j.jcta.2011.07.003
- Li, S., Ouyang, Y., 10.1016/j.jnt.2017.10.017, J. Number Theory 187 (2018), 41-65. (2018) Zbl1430.11047MR3766901DOI10.1016/j.jnt.2017.10.017
- Montgomery, H. L., Vaughan, R. C., 10.1017/CBO9780511618314, Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). (2007) Zbl1142.11001MR2378655DOI10.1017/CBO9780511618314
- Nicol, C. A., Vandiver, H. S., 10.1073/pnas.40.9.825, Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. (1954) Zbl0056.04001MR0063399DOI10.1073/pnas.40.9.825
- Rademacher, H., Über den Vektorenbereich eines konvexen ebenen Bereiches, Jahresber. Dtsch. Math.-Ver. 34 (1925), 64-79 German 9999JFM99999 51.0592.01. (1925)
- Ramanathan, K. G., 10.1007/BF03048959, Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69. (1944) Zbl0063.06402MR0011093DOI10.1007/BF03048959
- Riordan, J., 10.1090/S0002-9939-1962-0148562-2, Proc. Am. Math. Soc. 13 (1962), 107-110. (1962) Zbl0101.25106MR148562DOI10.1090/S0002-9939-1962-0148562-2
- Schönemann, T., 10.1515/crll.1839.19.231, J. Reine Angew. Math. 19 (1839), 231-243 German. (1839) MR1578210DOI10.1515/crll.1839.19.231
- Stangl, W. D., 10.2307/2690536, Math. Mag. 69 (1996), 285-289. (1996) Zbl1055.11500MR1424442DOI10.2307/2690536
- Tóth, L., Counting solutions of quadratic congruences in several variables revisited, J. Integer Seq. 17 (2014), Article ID 14.11.6, 23 pages. (2014) Zbl1321.11041MR3291084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.