Linear congruences and a conjecture of Bibak

Chinnakonda Gnanamoorthy Karthick Babu; Ranjan Bera; Balasubramanian Sury

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1185-1206
  • ISSN: 0011-4642

Abstract

top
We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences i = 1 k a i x i b ( mod n ) . In particular, we obtain explicit expressions for the number of solutions, where x i ’s are squares modulo n . In addition, we obtain expressions for the number of solutions with order restrictions x 1 x k or with strict order restrictions x 1 > > x k in some special cases. In these results, the expressions for the number of solutions involve Ramanujan sums and are obtained using their properties.

How to cite

top

Babu, Chinnakonda Gnanamoorthy Karthick, Bera, Ranjan, and Sury, Balasubramanian. "Linear congruences and a conjecture of Bibak." Czechoslovak Mathematical Journal 74.4 (2024): 1185-1206. <http://eudml.org/doc/299651>.

@article{Babu2024,
abstract = {We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences $\sum _\{i=1\}^k a_i x_i \equiv b \hspace\{4.44443pt\}(\@mod \; n)$. In particular, we obtain explicit expressions for the number of solutions, where $x_i$’s are squares modulo $n$. In addition, we obtain expressions for the number of solutions with order restrictions $x_1 \ge \cdots \ge x_k$ or with strict order restrictions $x_1> \cdots > x_k$ in some special cases. In these results, the expressions for the number of solutions involve Ramanujan sums and are obtained using their properties.},
author = {Babu, Chinnakonda Gnanamoorthy Karthick, Bera, Ranjan, Sury, Balasubramanian},
journal = {Czechoslovak Mathematical Journal},
keywords = {system of congruence; restricted linear congruence; Ramanujan sum; discrete Fourier transform},
language = {eng},
number = {4},
pages = {1185-1206},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear congruences and a conjecture of Bibak},
url = {http://eudml.org/doc/299651},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Babu, Chinnakonda Gnanamoorthy Karthick
AU - Bera, Ranjan
AU - Sury, Balasubramanian
TI - Linear congruences and a conjecture of Bibak
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1185
EP - 1206
AB - We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences $\sum _{i=1}^k a_i x_i \equiv b \hspace{4.44443pt}(\@mod \; n)$. In particular, we obtain explicit expressions for the number of solutions, where $x_i$’s are squares modulo $n$. In addition, we obtain expressions for the number of solutions with order restrictions $x_1 \ge \cdots \ge x_k$ or with strict order restrictions $x_1> \cdots > x_k$ in some special cases. In these results, the expressions for the number of solutions involve Ramanujan sums and are obtained using their properties.
LA - eng
KW - system of congruence; restricted linear congruence; Ramanujan sum; discrete Fourier transform
UR - http://eudml.org/doc/299651
ER -

References

top
  1. Bibak, K., 10.1016/j.disc.2019.111690, Discrete Math. 343 (2020), Article ID 111690, 4 pages. (2020) Zbl1447.11003MR4040063DOI10.1016/j.disc.2019.111690
  2. Bibak, K., Kapron, B. M., Srinivasan, V., 10.1016/j.nuclphysb.2016.07.028, Nucl. Phys., B 910 (2016), 712-723. (2016) Zbl1345.81096MR3535838DOI10.1016/j.nuclphysb.2016.07.028
  3. Bibak, K., Kapron, B. M., Srinivasan, V., 10.1007/s10623-017-0428-3, Des. Codes Cryptography 86 (2018), 1893-1904. (2018) Zbl1411.11035MR3816205DOI10.1007/s10623-017-0428-3
  4. Bibak, K., Kapron, B. M., Srinivasan, V., 10.1016/j.disc.2019.06.016, Discrete Math. 342 (2019), 3057-3061. (2019) Zbl1420.11006MR3996744DOI10.1016/j.disc.2019.06.016
  5. Bibak, K., Kapron, B. M., Srinivasan, V., Tauraso, R., Tóth, L., 10.1016/j.jnt.2016.07.018, J. Number Theory 171 (2017), 128-144. (2017) Zbl1353.11067MR3556678DOI10.1016/j.jnt.2016.07.018
  6. Bibak, K., Kapron, B. M., Srinivasan, V., Tóth, L., 10.1142/S0129054118500089, Int. J. Found. Comput. Sci. 29 (2018), 357-375. (2018) Zbl1391.94730MR3799234DOI10.1142/S0129054118500089
  7. Bibak, K., Milenkovic, O., 10.1109/TCOMM.2018.2886354, IEEE Trans. Commun. 67 (2019), 1809-1816. (2019) DOI10.1109/TCOMM.2018.2886354
  8. Brauer, A., Lösung der Aufgabe 30, Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94 German 9999JFM99999 52.0139.03. (1926) 
  9. Calderón, C., Grau, J. M., Oller-Marcén, A. M., Tóth, L., 10.5486/PMD.2015.7098, Publ. Math. Debr. 87 (2015), 133-145. (2015) Zbl1363.11004MR3367916DOI10.5486/PMD.2015.7098
  10. Cheng, Q., Murray, E., 10.1007/978-3-540-72504-6_27, Theory and Applications of Models of Computation Lecture Notes in Computer Science 4484. Springer, Berlin (2007), 296-305. (2007) Zbl1198.94189MR2374319DOI10.1007/978-3-540-72504-6_27
  11. Cohen, E., 10.1073/pnas.41.11.939, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. (1955) Zbl0066.29203MR0075230DOI10.1073/pnas.41.11.939
  12. Dickson, L. E., History of the Theory of Numbers. II. Diophantine Analysis, Chelsea Publishing, New York (1966). (1966) Zbl1214.11002MR0245500
  13. Grau, J. M., Oller-Marcén, A. M., 10.1016/j.jnt.2018.09.015, J. Number Theory 200 (2019), 427-440. (2019) Zbl1418.11056MR3944446DOI10.1016/j.jnt.2018.09.015
  14. Grynkiewicz, D. J., Philipp, A., Ponomarenko, V., 10.1007/s11856-012-0119-8, Isr. J. Math. 193 (2013), 359-398. (2013) Zbl1316.11010MR3038556DOI10.1007/s11856-012-0119-8
  15. Gupta, H., 10.6028/jres.074B.001, J. Res. Natl. Bur. Stand., Sect. B 74 (1970), 1-29. (1970) Zbl0203.30701MR0271055DOI10.6028/jres.074B.001
  16. Hull, R., 10.1090/S0002-9947-1932-1501668-0, Trans. Am. Math. Soc. 34 (1932), 908-937. (1932) Zbl0005.34501MR1501668DOI10.1090/S0002-9947-1932-1501668-0
  17. Ireland, K., Rosen, M., 10.1007/978-1-4757-2103-4, Graduate Texts in Mathematics 84. Springer, New York (1990). (1990) Zbl0712.11001MR1070716DOI10.1007/978-1-4757-2103-4
  18. Jacobson, D., Williams, K. S., 10.1215/S0012-7094-72-03959-2, Duke Math. J. 39 (1972), 521-527. (1972) Zbl0248.20018MR0302464DOI10.1215/S0012-7094-72-03959-2
  19. Lehmer, D. N., 10.1080/00029890.1913.11997942, Am. Math. Mon. 20 (1913), 148-157 9999JFM99999 44.0248.09. (1913) MR1517830DOI10.1080/00029890.1913.11997942
  20. Li, J., Wan, D., 10.1016/j.ffa.2008.05.003, Finite Fields Appl. 14 (2008), 911-929. (2008) Zbl1189.11058MR2457537DOI10.1016/j.ffa.2008.05.003
  21. Li, J., Wan, D., 10.1016/j.jcta.2011.07.003, J. Comb. Theory, Ser. A 119 (2012), 170-182. (2012) Zbl1229.05289MR2844090DOI10.1016/j.jcta.2011.07.003
  22. Li, S., Ouyang, Y., 10.1016/j.jnt.2017.10.017, J. Number Theory 187 (2018), 41-65. (2018) Zbl1430.11047MR3766901DOI10.1016/j.jnt.2017.10.017
  23. Montgomery, H. L., Vaughan, R. C., 10.1017/CBO9780511618314, Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). (2007) Zbl1142.11001MR2378655DOI10.1017/CBO9780511618314
  24. Nicol, C. A., Vandiver, H. S., 10.1073/pnas.40.9.825, Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. (1954) Zbl0056.04001MR0063399DOI10.1073/pnas.40.9.825
  25. Rademacher, H., Über den Vektorenbereich eines konvexen ebenen Bereiches, Jahresber. Dtsch. Math.-Ver. 34 (1925), 64-79 German 9999JFM99999 51.0592.01. (1925) 
  26. Ramanathan, K. G., 10.1007/BF03048959, Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69. (1944) Zbl0063.06402MR0011093DOI10.1007/BF03048959
  27. Riordan, J., 10.1090/S0002-9939-1962-0148562-2, Proc. Am. Math. Soc. 13 (1962), 107-110. (1962) Zbl0101.25106MR148562DOI10.1090/S0002-9939-1962-0148562-2
  28. Schönemann, T., 10.1515/crll.1839.19.231, J. Reine Angew. Math. 19 (1839), 231-243 German. (1839) MR1578210DOI10.1515/crll.1839.19.231
  29. Stangl, W. D., 10.2307/2690536, Math. Mag. 69 (1996), 285-289. (1996) Zbl1055.11500MR1424442DOI10.2307/2690536
  30. Tóth, L., Counting solutions of quadratic congruences in several variables revisited, J. Integer Seq. 17 (2014), Article ID 14.11.6, 23 pages. (2014) Zbl1321.11041MR3291084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.