An effective global path planning algorithm with teaching-learning-based optimization
Emad Hazrati Nejad; Sevgi Yigit-Sert; Sahin Emrah Amrahov
Kybernetika (2024)
- Issue: 3, page 293-316
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHazrati Nejad, Emad, Yigit-Sert, Sevgi, and Emrah Amrahov, Sahin. "An effective global path planning algorithm with teaching-learning-based optimization." Kybernetika (2024): 293-316. <http://eudml.org/doc/299289>.
@article{HazratiNejad2024,
abstract = {Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed algorithm changes the initially randomly selected control points step by step to obtain shorter Bezier curves that do not hit obstacles. We also improve the genetic algorithm-based path planning algorithm. Experimental results show that they provide better paths than other existing algorithms.},
author = {Hazrati Nejad, Emad, Yigit-Sert, Sevgi, Emrah Amrahov, Sahin},
journal = {Kybernetika},
keywords = {path planning; mobile robot; teaching-learning based optimization; Bezier curve},
language = {eng},
number = {3},
pages = {293-316},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An effective global path planning algorithm with teaching-learning-based optimization},
url = {http://eudml.org/doc/299289},
year = {2024},
}
TY - JOUR
AU - Hazrati Nejad, Emad
AU - Yigit-Sert, Sevgi
AU - Emrah Amrahov, Sahin
TI - An effective global path planning algorithm with teaching-learning-based optimization
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 3
SP - 293
EP - 316
AB - Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed algorithm changes the initially randomly selected control points step by step to obtain shorter Bezier curves that do not hit obstacles. We also improve the genetic algorithm-based path planning algorithm. Experimental results show that they provide better paths than other existing algorithms.
LA - eng
KW - path planning; mobile robot; teaching-learning based optimization; Bezier curve
UR - http://eudml.org/doc/299289
ER -
References
top- Alguliyev, R. M., Aliguliyev, R. M., Alakbarov, R. G., , Kybernetika 59 (2023), 1, 88-109. DOI
- Alnasser, S., Bennaceur, H., An efficient genetic algorithm for the global robot path planning problem., In: Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), Turkey 2016, pp. 97-102.
- Ang, K. M., El-kenawy, E. S. M., Abdelhamid, A. A., Ibrahim, A., Alharbi, A. H., Khafaga, D. S., Tiang, S. S., Lim, W. H., , Symmetry 14 (2022), 2323. DOI
- Ansari, A. Q., Katiyar, I., Comparison and analysis of obstacle avoiding path planning of mobile robot by using ant colony optimization and teaching learning based optimization techniques., In: Proc. First International Conference on Information and Communication Technology for Intelligent Systems, Volume 2. Smart Innovation, Systems and Technologies, 2016, pp. 563-574.
- Aouf, A., Boussaid, L., Sakly, A., , Comput. Intell. Neurosci. 4 (2018). DOI
- Ar, Y., , Evolution. Intell. 13 (2020), 2, 269-281. DOI
- Ar, Y., Amrahov, S. Emrah, Gasilov, N., Yigit-Sert, S., , Kybernetika 58 (2022), 3, 440-455. DOI
- Bezier, P., , Computer-aided Design 22 (1990), 9, 524-526. MR1856142DOI
- Bodhale, D., Afzulpurkar, N., Thanh, N. T., Path planning for a mobile robot in a dynamic environment., In: IEEE International Conference on Robotics and Biomimetics, Thailand 2009, pp. 2115-2120.
- Bouchekara, H., Abido, M., Boucherma, M., , Electric Power Systems Research 114 (2014), 49-59. DOI
- Chaari, I., Koubaa, A., Bennaceur, H., Trigui, S., Al-Shalfan, K., A hybrid ACO-GA algorithm for robot path planning., In: IEEE Congress on Evolutionary Computation, Brisbane 2012, pp. 1-8.
- Chia, S. H., Su, K. L., Guo, J. H., Chung, C. Y., Ant colony system based mobile robot path planning., In: IEEE International Conference on Genetic and Evolutionary Computing, China 2010, pp. 210-213.
- Dai, Y., Yu, J., Zhang, C., Zhan, B., Zheng, X., , Appl. Intell. 53 (2023), 10843-10857. DOI
- Duraklı, Z., Nabiyev, V., , J. Comput. Sci. 58 (2022), 101542. DOI
- Elhoseny, M., Tharwat, A., Hassanien, A. E., 10.1016/j.jocs.2017.08.004, J. Comput. Sci. 25 (2018), 339-358. DOI10.1016/j.jocs.2017.08.004
- Feng, S., Zhang, S., Xu, M., Deng, G., , Kybernetika 59 (2023), 4, 592-611. MR4660380DOI
- Gasilov, N., Dogan, M., Arici, V., , IETE J. Res. 57 (2011), 3, 278-285. DOI
- Guevara, B. C., An Overview of the Class of Rapidly-Exploring Random Trees., M.Sc. Thesis, Utrecht University 2018.
- Güzel, M. S., Kara, M., Beyazkilic, M. S., , Adaptive Behavior 25 (2017), 1, 30-39. DOI
- Hossain, M. A., Ferdous, I., , In: International Conference on Electrical Information and Communication Technology (EICT), Bangladesh 2014, pp. 1-6. DOI
- Holland, J. H., Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence., MIT Press, 1992. MR0441393
- Ismail, A. T., Sheta, A., Al-Weshah, A., , J. Computer Sci. 4 (2008), 4, 341-344. DOI
- Kroll, A., Soldan, S., , In: 11th International Conference on Control Automation Robotics and Vision, Singapore 2010, pp. 621-626. DOI
- Kumar, A., Ahmad, G., Shahid, M., , In: Proc. International Joint Conference on Advances in Computational Intelligence, Singapore 2023, pp. 553-564. DOI
- Li, C., Huang, X., Ding, J., Song, K., Lu, S., , Comput. Industr. Engrg. 168 (2022), 108123. DOI
- Li, J., Chen, Y., Zhao, X., Huang, J., , J. Supercomput. 78 (2022) 616-639. DOI
- Li, X., Zhao, G., Li, B., , Appl. Math. Modell. 85 (2020), 210-230. MR4099345DOI
- Li, Y., Huang, Z., Xie, Y., Path planning of mobile robot based on improved genetic algorithm., In: 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME), China 2020, pp. 691-695. MR3798895
- Li, Y., Wei, W., Gao, Y., Wang, D., Fan, Z., , Expert Systems Appl.152 (2020), 113425. DOI
- Liu, J., Yang, J., Liu, H., Tian, X., Gao, M., , Soft Comput. 21 (2017), 5829-5839. DOI
- Liu, J., Wei, X., Huang, H., , IEEE Access 9 (2021), 121944-121956. DOI
- Low, E. S., Ong, P., Low, C. Y., Omar, R., , Expert Systems Appl. 199 (2022), 117191. DOI
- Luan, P. G., Thinh, N. T., , Mechanics Based Design Structures Machines 51 (2023), 1758-1774. DOI
- Luo, S., Zhang, M., Zhuang, Y., Ma, C., Li, Q., , Frontiers Neurorobotics 17 (2023). DOI
- Lyu, D., Chen, Z., Cai, Z., Piao, S., , Future Generation Computer Systems 122 (2021), 204-208. DOI
- Ma, J., Liu, Y., Zang, S., Wang, L., , Comput. Intell. Neurosci. (2020). DOI
- Maoudj, A., Hentout, A., , Appl. Soft Comput. 97 (2020), 106796. DOI
- Miao, C., Chen, G., Yan, C., Wu, Y., , Comput. Industr. Engrg. 156 (2021), 107230. DOI
- Mirjalili, S., Genetic Algorithm, Evolutionary Algorithms and Neural Networks., Springer Cham 2019, 43-55.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., al., et, , Nature 518 (2015), 529-533. DOI
- Naji, H. F., Kullu, P., Amrahov, S. Emrah, , Educat. Inform. Technolog. (2023), 1-13. DOI
- Kartli, N., Bostanci, E., Guzel, M. S., , In: 7th International Conference on Computer Science and Engineering (UBMK), IEEE, 2022, pp. 82-85. MR4567841DOI
- Kartli, N., Bostanci, E., Guzel, M. S., , Kybernetika 59 (2023), 1, 45-63. MR4567841DOI
- Rajinikanth, V., Satapathy, S. C., Fernandes, S. L., Nachiappan, S., , Pattern Recognit. Lett. 94 (2017), 87-95. DOI
- Rao, R. V., Savsani, V. J., Vakharia, D., , Computer-aided Design 43 (2011), 303-315. MR2847014DOI
- Sabiha, A. D., Kamel, M. A., Said, E., Hussein, W. H., , Communications 24 (2022), C33-C42. DOI
- Sert, S. Y., Ar, Y., Bostanci, G. E., , Turkish J. Electr. Engrg. Computer Sci. 27 (2019), 3, 2121-2136. DOI
- Shin, D. H., Ollero, A., , J. Robotic Syst. 12 (1995), 7, 491-503. DOI
- Tang, H., Fang, B., Liu, R., Li, Y., Guo, S., , Appl. Soft Comput. 120 (2022), 108694. DOI
- Tu, H., Deng, Y., Li, Q., Song, M., Zheng, X., , Robotics Autonomous Systems 171 (2024), 104570. DOI
- Wang, J., Chi, W., Li, C., Wang, C., Meng, M. Q. H., , IEEE Trans. Automat. Sci. Engrg. 17 (2020), 1748-1758. DOI
- Wang, W., Li, J., Bai, Z., Wei, Z., Peng, J., , IEEE Access (2024). DOI
- Wu, Z., Fu, W., Xue, R., Wang, W., , Information 7 (2016), 39. DOI
- Xu, L., Cao, M., Song, B., , Neurocomputing 473 (2022), 98-106. DOI
- Yildirim, H. B., Kullu, K., Amrahov, S. Emrah, , Universal Access Inform. Soc. (2023), 1-11. DOI
- Yuan, X., Yuan, X., Wang, X., , Sensors 21 (2021), 4389. DOI
- Zhang, L., Min, H., Wei, H., Huang, H., Global path planning for mobile robot based on A* algorithm and genetic algorithm., In: IEEE International Conference on Robotics and Biomimetics (ROBIO), China 2012, pp. 1795-1799.
- Zhang, T. W., Xu, G. H., Zhan, X. S., Han, T., , J. Supercomput. 78 (2022), 4158-4181. DOI
- Zhang, Y., Jin, Z., Chen, Y., , Knowledge-Based Systems 187 (2020), 104836. DOI
- Zhang, Z., He, R., Yang, K., , Adv. Manufactur. 10 (2022), 114-130. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.