An effective global path planning algorithm with teaching-learning-based optimization

Emad Hazrati Nejad; Sevgi Yigit-Sert; Sahin Emrah Amrahov

Kybernetika (2024)

  • Issue: 3, page 293-316
  • ISSN: 0023-5954

Abstract

top
Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed algorithm changes the initially randomly selected control points step by step to obtain shorter Bezier curves that do not hit obstacles. We also improve the genetic algorithm-based path planning algorithm. Experimental results show that they provide better paths than other existing algorithms.

How to cite

top

Hazrati Nejad, Emad, Yigit-Sert, Sevgi, and Emrah Amrahov, Sahin. "An effective global path planning algorithm with teaching-learning-based optimization." Kybernetika (2024): 293-316. <http://eudml.org/doc/299289>.

@article{HazratiNejad2024,
abstract = {Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed algorithm changes the initially randomly selected control points step by step to obtain shorter Bezier curves that do not hit obstacles. We also improve the genetic algorithm-based path planning algorithm. Experimental results show that they provide better paths than other existing algorithms.},
author = {Hazrati Nejad, Emad, Yigit-Sert, Sevgi, Emrah Amrahov, Sahin},
journal = {Kybernetika},
keywords = {path planning; mobile robot; teaching-learning based optimization; Bezier curve},
language = {eng},
number = {3},
pages = {293-316},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An effective global path planning algorithm with teaching-learning-based optimization},
url = {http://eudml.org/doc/299289},
year = {2024},
}

TY - JOUR
AU - Hazrati Nejad, Emad
AU - Yigit-Sert, Sevgi
AU - Emrah Amrahov, Sahin
TI - An effective global path planning algorithm with teaching-learning-based optimization
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 3
SP - 293
EP - 316
AB - Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed algorithm changes the initially randomly selected control points step by step to obtain shorter Bezier curves that do not hit obstacles. We also improve the genetic algorithm-based path planning algorithm. Experimental results show that they provide better paths than other existing algorithms.
LA - eng
KW - path planning; mobile robot; teaching-learning based optimization; Bezier curve
UR - http://eudml.org/doc/299289
ER -

References

top
  1. Alguliyev, R. M., Aliguliyev, R. M., Alakbarov, R. G., , Kybernetika 59 (2023), 1, 88-109. DOI
  2. Alnasser, S., Bennaceur, H., An efficient genetic algorithm for the global robot path planning problem., In: Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), Turkey 2016, pp. 97-102. 
  3. Ang, K. M., El-kenawy, E. S. M., Abdelhamid, A. A., Ibrahim, A., Alharbi, A. H., Khafaga, D. S., Tiang, S. S., Lim, W. H., , Symmetry 14 (2022), 2323. DOI
  4. Ansari, A. Q., Katiyar, I., Comparison and analysis of obstacle avoiding path planning of mobile robot by using ant colony optimization and teaching learning based optimization techniques., In: Proc. First International Conference on Information and Communication Technology for Intelligent Systems, Volume 2. Smart Innovation, Systems and Technologies, 2016, pp. 563-574. 
  5. Aouf, A., Boussaid, L., Sakly, A., , Comput. Intell. Neurosci. 4 (2018). DOI
  6. Ar, Y., , Evolution. Intell. 13 (2020), 2, 269-281. DOI
  7. Ar, Y., Amrahov, S. Emrah, Gasilov, N., Yigit-Sert, S., , Kybernetika 58 (2022), 3, 440-455. DOI
  8. Bezier, P., , Computer-aided Design 22 (1990), 9, 524-526. MR1856142DOI
  9. Bodhale, D., Afzulpurkar, N., Thanh, N. T., Path planning for a mobile robot in a dynamic environment., In: IEEE International Conference on Robotics and Biomimetics, Thailand 2009, pp. 2115-2120. 
  10. Bouchekara, H., Abido, M., Boucherma, M., , Electric Power Systems Research 114 (2014), 49-59. DOI
  11. Chaari, I., Koubaa, A., Bennaceur, H., Trigui, S., Al-Shalfan, K., A hybrid ACO-GA algorithm for robot path planning., In: IEEE Congress on Evolutionary Computation, Brisbane 2012, pp. 1-8. 
  12. Chia, S. H., Su, K. L., Guo, J. H., Chung, C. Y., Ant colony system based mobile robot path planning., In: IEEE International Conference on Genetic and Evolutionary Computing, China 2010, pp. 210-213. 
  13. Dai, Y., Yu, J., Zhang, C., Zhan, B., Zheng, X., , Appl. Intell. 53 (2023), 10843-10857. DOI
  14. Duraklı, Z., Nabiyev, V., , J. Comput. Sci. 58 (2022), 101542. DOI
  15. Elhoseny, M., Tharwat, A., Hassanien, A. E., 10.1016/j.jocs.2017.08.004, J. Comput. Sci. 25 (2018), 339-358. DOI10.1016/j.jocs.2017.08.004
  16. Feng, S., Zhang, S., Xu, M., Deng, G., , Kybernetika 59 (2023), 4, 592-611. MR4660380DOI
  17. Gasilov, N., Dogan, M., Arici, V., , IETE J. Res. 57 (2011), 3, 278-285. DOI
  18. Guevara, B. C., An Overview of the Class of Rapidly-Exploring Random Trees., M.Sc. Thesis, Utrecht University 2018. 
  19. Güzel, M. S., Kara, M., Beyazkilic, M. S., , Adaptive Behavior 25 (2017), 1, 30-39. DOI
  20. Hossain, M. A., Ferdous, I., , In: International Conference on Electrical Information and Communication Technology (EICT), Bangladesh 2014, pp. 1-6. DOI
  21. Holland, J. H., Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence., MIT Press, 1992. MR0441393
  22. Ismail, A. T., Sheta, A., Al-Weshah, A., , J. Computer Sci. 4 (2008), 4, 341-344. DOI
  23. Kroll, A., Soldan, S., , In: 11th International Conference on Control Automation Robotics and Vision, Singapore 2010, pp. 621-626. DOI
  24. Kumar, A., Ahmad, G., Shahid, M., , In: Proc. International Joint Conference on Advances in Computational Intelligence, Singapore 2023, pp. 553-564. DOI
  25. Li, C., Huang, X., Ding, J., Song, K., Lu, S., , Comput. Industr. Engrg. 168 (2022), 108123. DOI
  26. Li, J., Chen, Y., Zhao, X., Huang, J., , J. Supercomput. 78 (2022) 616-639. DOI
  27. Li, X., Zhao, G., Li, B., , Appl. Math. Modell. 85 (2020), 210-230. MR4099345DOI
  28. Li, Y., Huang, Z., Xie, Y., Path planning of mobile robot based on improved genetic algorithm., In: 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME), China 2020, pp. 691-695. MR3798895
  29. Li, Y., Wei, W., Gao, Y., Wang, D., Fan, Z., , Expert Systems Appl.152 (2020), 113425. DOI
  30. Liu, J., Yang, J., Liu, H., Tian, X., Gao, M., , Soft Comput. 21 (2017), 5829-5839. DOI
  31. Liu, J., Wei, X., Huang, H., , IEEE Access 9 (2021), 121944-121956. DOI
  32. Low, E. S., Ong, P., Low, C. Y., Omar, R., , Expert Systems Appl. 199 (2022), 117191. DOI
  33. Luan, P. G., Thinh, N. T., , Mechanics Based Design Structures Machines 51 (2023), 1758-1774. DOI
  34. Luo, S., Zhang, M., Zhuang, Y., Ma, C., Li, Q., , Frontiers Neurorobotics 17 (2023). DOI
  35. Lyu, D., Chen, Z., Cai, Z., Piao, S., , Future Generation Computer Systems 122 (2021), 204-208. DOI
  36. Ma, J., Liu, Y., Zang, S., Wang, L., , Comput. Intell. Neurosci. (2020). DOI
  37. Maoudj, A., Hentout, A., , Appl. Soft Comput. 97 (2020), 106796. DOI
  38. Miao, C., Chen, G., Yan, C., Wu, Y., , Comput. Industr. Engrg. 156 (2021), 107230. DOI
  39. Mirjalili, S., Genetic Algorithm, Evolutionary Algorithms and Neural Networks., Springer Cham 2019, 43-55. 
  40. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., al., et, , Nature 518 (2015), 529-533. DOI
  41. Naji, H. F., Kullu, P., Amrahov, S. Emrah, , Educat. Inform. Technolog. (2023), 1-13. DOI
  42. Kartli, N., Bostanci, E., Guzel, M. S., , In: 7th International Conference on Computer Science and Engineering (UBMK), IEEE, 2022, pp. 82-85. MR4567841DOI
  43. Kartli, N., Bostanci, E., Guzel, M. S., , Kybernetika 59 (2023), 1, 45-63. MR4567841DOI
  44. Rajinikanth, V., Satapathy, S. C., Fernandes, S. L., Nachiappan, S., , Pattern Recognit. Lett. 94 (2017), 87-95. DOI
  45. Rao, R. V., Savsani, V. J., Vakharia, D., , Computer-aided Design 43 (2011), 303-315. MR2847014DOI
  46. Sabiha, A. D., Kamel, M. A., Said, E., Hussein, W. H., , Communications 24 (2022), C33-C42. DOI
  47. Sert, S. Y., Ar, Y., Bostanci, G. E., , Turkish J. Electr. Engrg. Computer Sci. 27 (2019), 3, 2121-2136. DOI
  48. Shin, D. H., Ollero, A., , J. Robotic Syst. 12 (1995), 7, 491-503. DOI
  49. Tang, H., Fang, B., Liu, R., Li, Y., Guo, S., , Appl. Soft Comput. 120 (2022), 108694. DOI
  50. Tu, H., Deng, Y., Li, Q., Song, M., Zheng, X., , Robotics Autonomous Systems 171 (2024), 104570. DOI
  51. Wang, J., Chi, W., Li, C., Wang, C., Meng, M. Q. H., , IEEE Trans. Automat. Sci. Engrg. 17 (2020), 1748-1758. DOI
  52. Wang, W., Li, J., Bai, Z., Wei, Z., Peng, J., , IEEE Access (2024). DOI
  53. Wu, Z., Fu, W., Xue, R., Wang, W., , Information 7 (2016), 39. DOI
  54. Xu, L., Cao, M., Song, B., , Neurocomputing 473 (2022), 98-106. DOI
  55. Yildirim, H. B., Kullu, K., Amrahov, S. Emrah, , Universal Access Inform. Soc. (2023), 1-11. DOI
  56. Yuan, X., Yuan, X., Wang, X., , Sensors 21 (2021), 4389. DOI
  57. Zhang, L., Min, H., Wei, H., Huang, H., Global path planning for mobile robot based on A* algorithm and genetic algorithm., In: IEEE International Conference on Robotics and Biomimetics (ROBIO), China 2012, pp. 1795-1799. 
  58. Zhang, T. W., Xu, G. H., Zhan, X. S., Han, T., , J. Supercomput. 78 (2022), 4158-4181. DOI
  59. Zhang, Y., Jin, Z., Chen, Y., , Knowledge-Based Systems 187 (2020), 104836. DOI
  60. Zhang, Z., He, R., Yang, K., , Adv. Manufactur. 10 (2022), 114-130. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.