Algebras determined by their endomorphism monoids

V. Koubek; H. Radovanská

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1994)

  • Volume: 35, Issue: 3, page 187-225
  • ISSN: 1245-530X

How to cite


Koubek, V., and Radovanská, H.. "Algebras determined by their endomorphism monoids." Cahiers de Topologie et Géométrie Différentielle Catégoriques 35.3 (1994): 187-225. <>.

author = {Koubek, V., Radovanská, H.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {-determined category; -algebras; endomorphism monoids; lattices; Heyting algebras; Abelian groups},
language = {eng},
number = {3},
pages = {187-225},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Algebras determined by their endomorphism monoids},
url = {},
volume = {35},
year = {1994},

AU - Koubek, V.
AU - Radovanská, H.
TI - Algebras determined by their endomorphism monoids
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1994
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 35
IS - 3
SP - 187
EP - 225
LA - eng
KW - -determined category; -algebras; endomorphism monoids; lattices; Heyting algebras; Abelian groups
UR -
ER -


  1. 1 M.E. Adams and D.M. Clark, Endomorphism monoids in minimal quasi primal varieties, Techn. Report. State Univ. of New York (1984). Zbl0714.08002
  2. 2 M.E. Adams, V. Koubek and J. Sichler, Homomorphisms andEndomorphisms in Varieties of Pseudocomplemented Distributive Lattices (with Applications to Heyting Algebras), Trans. Amer. Math. Soc.285 (1984), 57-79. Zbl0523.06015MR748830
  3. 3 M.E. Adams, V. Koubek and J. Sichler, Homomorphisms of distributive p-algebras with countably many prime ideals, Bull. Austral. Math. Soc.35 (1987), 427-439. Zbl0605.06010MR888902
  4. 4 M.E. Adams, V. Koubek and J. Sichler, Endomorphisms and homomorphismsof Heyting algebras, Algebra Universalis20 (1985), 167-178. Zbl0571.06013MR806611
  5. 5 H.J. Bandelt, Endomorphism semigroups of median algebras, Algebra Universalis12 (1981), 262-264. Zbl0459.08001MR608671
  6. 6 A.H. Clifford and G. B. Preston, TheAlgebraic Theory of Semigroups, Amer. Math. Soc., Providence, Rhode Island, 1961. Zbl0111.03403MR132791
  7. 7 M. Demlová and V. Koubek, Endomorphism monoids of bands, Semigroup Forum38 (1989), 305-329. Zbl0664.20042MR982011
  8. 8 S. Foldes and G. Sabidussi, Recursive undecidability of the binding property for finitely presented equational classes, Algebra Universalis12 (1981), 1-4. Zbl0458.08005MR608644
  9. 9 L. Fuchs, Infinite Abelian Goups,, Academic Press, New York and London, 1970. Zbl0209.05503MR255673
  10. 10 L.M. Gluskin, Semigroups of isolone transformations, Uspekhi Mat. Nauk19 (1961), 157- 162. Zbl0104.24301
  11. 11 T. Hecht and T. Katrinák, Equational classes of relative Stone algebras, Notre Dame J. Forrnal Logic13 (1972), 248-254. Zbl0212.01601MR295978
  12. 12 P. Köhler, Endomorphism semigroups of Brouwerian semilattices, Semigroup Forum15 (1978), 229-234. Zbl0381.06016MR466381
  13. 13 V. Koubek and J. Sichler, On Priestley duals of products, Cahiers Topo. et Diff. Geo.32 (1991), 243-256. Zbl0774.06006MR1158110
  14. 14 K.B. Lee, Equational classes of distributive pseudocomplemented lattices, Canad. J. Math.22 (1970), 881-891. Zbl0244.06009MR265240
  15. 15 S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New YorkBerlinHeidelberg, 1971. Zbl0232.18001MR354798
  16. 16 K.D. Magill, The semigroup of endomorphisms of a Boolean ring, Semigroup Forum4 (1972), 411-416. Zbl0224.06007MR272690
  17. 17 C.J. Maxson, On semigroups of Boolean ring endomorphisms, Semigroup Forum4 (1972), 78-82. Zbl0262.06011MR297900
  18. 18 R. McKenzie and C. Tsinakis, On recovering a bounded distributive lattices from its endomorphism monoid, Houston J. Math.7 (1981), 525-529. Zbl0492.06009MR658568
  19. 19 H.A. Priestley, Representation of distributive lattices by means of order Stone spaces, Bull. London Math. Soc.2 (1970), 186-190. Zbl0201.01802MR265242
  20. 20 H.A. Priestley, The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Math. Oxford26 (1975), 215-228. Zbl0323.06013MR392731
  21. 21 H. Prüfer, Untersuchungen über die Zerlegbarkeit der abzählbaren primären abelachen Gruppen, Math. Z.17 (1923), 35-61. Zbl49.0084.03MR1544601JFM49.0084.03
  22. 22 A. Pultr and V. Trnková, Combinatorial, algebraic and topological representations of groups, semigroups and categories, North Holland, Amsterdam, 1980. Zbl0418.18004MR563525
  23. 23 H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Monogr. Mat.,, PWN, Warsaw, 1963. Zbl0122.24311MR163850
  24. 24 P. Ribenboim, Characterization of the sup-complementin a distributive lattice with last element, Summa Brasil. Math.2 (1949), 43-49. Zbl0040.01003MR30931
  25. 25 B.M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math.68 (1970), 31-50. Zbl0197.28902MR272686
  26. 26 B.M. Schein, Bands with isomorphic endomorphism semigroups, J. Algebra96 (1985), 548-562. Zbl0579.20064MR810545
  27. 27 S. Shelah, Infinite abelian groups: Whitehead problem and some constuctions, Israel J. Math.18 (1974), 243-256. Zbl0318.02053MR357114
  28. 28 W. Taylor, The clone of a topological space, Volume 13 of Research and Exposition in Mathematics, Helderman Verlag, 1986. Zbl0615.54013MR879120
  29. 29 C. Tsinakis, Brouwerian semilattices determined by their endomorphism semigroups, Houston J. Math.5 (1979), 427-436. Zbl0431.06003MR559982
  30. 30 V. Trnková, Semirigid spaces, preprint (1992). Zbl0803.54015MR1219734

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.