Algebras determined by their endomorphism monoids
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1994)
- Volume: 35, Issue: 3, page 187-225
- ISSN: 1245-530X
Access Full Article
topHow to cite
topKoubek, V., and Radovanská, H.. "Algebras determined by their endomorphism monoids." Cahiers de Topologie et Géométrie Différentielle Catégoriques 35.3 (1994): 187-225. <http://eudml.org/doc/91544>.
@article{Koubek1994,
author = {Koubek, V., Radovanská, H.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {-determined category; -algebras; endomorphism monoids; lattices; Heyting algebras; Abelian groups},
language = {eng},
number = {3},
pages = {187-225},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Algebras determined by their endomorphism monoids},
url = {http://eudml.org/doc/91544},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Koubek, V.
AU - Radovanská, H.
TI - Algebras determined by their endomorphism monoids
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1994
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 35
IS - 3
SP - 187
EP - 225
LA - eng
KW - -determined category; -algebras; endomorphism monoids; lattices; Heyting algebras; Abelian groups
UR - http://eudml.org/doc/91544
ER -
References
top- 1 M.E. Adams and D.M. Clark, Endomorphism monoids in minimal quasi primal varieties, Techn. Report. State Univ. of New York (1984). Zbl0714.08002
- 2 M.E. Adams, V. Koubek and J. Sichler, Homomorphisms andEndomorphisms in Varieties of Pseudocomplemented Distributive Lattices (with Applications to Heyting Algebras), Trans. Amer. Math. Soc.285 (1984), 57-79. Zbl0523.06015MR748830
- 3 M.E. Adams, V. Koubek and J. Sichler, Homomorphisms of distributive p-algebras with countably many prime ideals, Bull. Austral. Math. Soc.35 (1987), 427-439. Zbl0605.06010MR888902
- 4 M.E. Adams, V. Koubek and J. Sichler, Endomorphisms and homomorphismsof Heyting algebras, Algebra Universalis20 (1985), 167-178. Zbl0571.06013MR806611
- 5 H.J. Bandelt, Endomorphism semigroups of median algebras, Algebra Universalis12 (1981), 262-264. Zbl0459.08001MR608671
- 6 A.H. Clifford and G. B. Preston, TheAlgebraic Theory of Semigroups, Amer. Math. Soc., Providence, Rhode Island, 1961. Zbl0111.03403MR132791
- 7 M. Demlová and V. Koubek, Endomorphism monoids of bands, Semigroup Forum38 (1989), 305-329. Zbl0664.20042MR982011
- 8 S. Foldes and G. Sabidussi, Recursive undecidability of the binding property for finitely presented equational classes, Algebra Universalis12 (1981), 1-4. Zbl0458.08005MR608644
- 9 L. Fuchs, Infinite Abelian Goups,, Academic Press, New York and London, 1970. Zbl0209.05503MR255673
- 10 L.M. Gluskin, Semigroups of isolone transformations, Uspekhi Mat. Nauk19 (1961), 157- 162. Zbl0104.24301
- 11 T. Hecht and T. Katrinák, Equational classes of relative Stone algebras, Notre Dame J. Forrnal Logic13 (1972), 248-254. Zbl0212.01601MR295978
- 12 P. Köhler, Endomorphism semigroups of Brouwerian semilattices, Semigroup Forum15 (1978), 229-234. Zbl0381.06016MR466381
- 13 V. Koubek and J. Sichler, On Priestley duals of products, Cahiers Topo. et Diff. Geo.32 (1991), 243-256. Zbl0774.06006MR1158110
- 14 K.B. Lee, Equational classes of distributive pseudocomplemented lattices, Canad. J. Math.22 (1970), 881-891. Zbl0244.06009MR265240
- 15 S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New YorkBerlinHeidelberg, 1971. Zbl0232.18001MR354798
- 16 K.D. Magill, The semigroup of endomorphisms of a Boolean ring, Semigroup Forum4 (1972), 411-416. Zbl0224.06007MR272690
- 17 C.J. Maxson, On semigroups of Boolean ring endomorphisms, Semigroup Forum4 (1972), 78-82. Zbl0262.06011MR297900
- 18 R. McKenzie and C. Tsinakis, On recovering a bounded distributive lattices from its endomorphism monoid, Houston J. Math.7 (1981), 525-529. Zbl0492.06009MR658568
- 19 H.A. Priestley, Representation of distributive lattices by means of order Stone spaces, Bull. London Math. Soc.2 (1970), 186-190. Zbl0201.01802MR265242
- 20 H.A. Priestley, The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Math. Oxford26 (1975), 215-228. Zbl0323.06013MR392731
- 21 H. Prüfer, Untersuchungen über die Zerlegbarkeit der abzählbaren primären abelachen Gruppen, Math. Z.17 (1923), 35-61. Zbl49.0084.03MR1544601JFM49.0084.03
- 22 A. Pultr and V. Trnková, Combinatorial, algebraic and topological representations of groups, semigroups and categories, North Holland, Amsterdam, 1980. Zbl0418.18004MR563525
- 23 H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Monogr. Mat.,, PWN, Warsaw, 1963. Zbl0122.24311MR163850
- 24 P. Ribenboim, Characterization of the sup-complementin a distributive lattice with last element, Summa Brasil. Math.2 (1949), 43-49. Zbl0040.01003MR30931
- 25 B.M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math.68 (1970), 31-50. Zbl0197.28902MR272686
- 26 B.M. Schein, Bands with isomorphic endomorphism semigroups, J. Algebra96 (1985), 548-562. Zbl0579.20064MR810545
- 27 S. Shelah, Infinite abelian groups: Whitehead problem and some constuctions, Israel J. Math.18 (1974), 243-256. Zbl0318.02053MR357114
- 28 W. Taylor, The clone of a topological space, Volume 13 of Research and Exposition in Mathematics, Helderman Verlag, 1986. Zbl0615.54013MR879120
- 29 C. Tsinakis, Brouwerian semilattices determined by their endomorphism semigroups, Houston J. Math.5 (1979), 427-436. Zbl0431.06003MR559982
- 30 V. Trnková, Semirigid spaces, preprint (1992). Zbl0803.54015MR1219734
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.