A full characterization of multipliers for the strong -integral in the euclidean space
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 3, page 657-674
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTuo-Yeong, Lee. "A full characterization of multipliers for the strong $\rho $-integral in the euclidean space." Czechoslovak Mathematical Journal 54.3 (2004): 657-674. <http://eudml.org/doc/30889>.
@article{Tuo2004,
abstract = {We study a generalization of the classical Henstock-Kurzweil integral, known as the strong $\rho $-integral, introduced by Jarník and Kurzweil. Let $(\mathcal \{S\}_\{\rho \} (E), \Vert \cdot \Vert )$ be the space of all strongly $\rho $-integrable functions on a multidimensional compact interval $E$, equipped with the Alexiewicz norm $\Vert \cdot \Vert $. We show that each element in the dual space of $(\mathcal \{S\}_\{\rho \} (E), \Vert \cdot \Vert )$ can be represented as a strong $\rho $-integral. Consequently, we prove that $fg$ is strongly $\rho $-integrable on $E$ for each strongly $\rho $-integrable function $f$ if and only if $g$ is almost everywhere equal to a function of bounded variation (in the sense of Hardy-Krause) on $E$.},
author = {Tuo-Yeong, Lee},
journal = {Czechoslovak Mathematical Journal},
keywords = {strong $\rho $-integral; multipliers; dual space; strong -integral; multipliers; dual space; Kurzweil-Henstock integral},
language = {eng},
number = {3},
pages = {657-674},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A full characterization of multipliers for the strong $\rho $-integral in the euclidean space},
url = {http://eudml.org/doc/30889},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Tuo-Yeong, Lee
TI - A full characterization of multipliers for the strong $\rho $-integral in the euclidean space
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 657
EP - 674
AB - We study a generalization of the classical Henstock-Kurzweil integral, known as the strong $\rho $-integral, introduced by Jarník and Kurzweil. Let $(\mathcal {S}_{\rho } (E), \Vert \cdot \Vert )$ be the space of all strongly $\rho $-integrable functions on a multidimensional compact interval $E$, equipped with the Alexiewicz norm $\Vert \cdot \Vert $. We show that each element in the dual space of $(\mathcal {S}_{\rho } (E), \Vert \cdot \Vert )$ can be represented as a strong $\rho $-integral. Consequently, we prove that $fg$ is strongly $\rho $-integrable on $E$ for each strongly $\rho $-integrable function $f$ if and only if $g$ is almost everywhere equal to a function of bounded variation (in the sense of Hardy-Krause) on $E$.
LA - eng
KW - strong $\rho $-integral; multipliers; dual space; strong -integral; multipliers; dual space; Kurzweil-Henstock integral
UR - http://eudml.org/doc/30889
ER -
References
top- 10.4064/cm-1-4-289-293, Colloq. Math. 1 (1948), 289–293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
- The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994. (1994) Zbl0807.26004MR1288751
- Perron-type integration on -dimensional intervals and its properties, Czechoslovak Math. J. 45 (120) (1995), 79–106. (1995) MR1314532
- On multiplication of Perron integrable functions, Czechoslovak Math. J. 23 (98) (1973), 542–566. (1973) Zbl0269.26007MR0335705
- Perron-type integration on -dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence, Czechoslovak Math. J. 46 (121) (1996), 1–20. (1996) MR1371683
- Lanzhou Lectures on Henstock integration, World Scientific, 1989. (1989) Zbl0699.26004MR1050957
- The integral: An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. (2000) MR1756319
- 10.1017/S0004972700021857, Bull. Austral. Math. Soc. 54 (1996), 441–449. (1996) MR1419607DOI10.1017/S0004972700021857
- Multipliers for some non-absolute integrals in the Euclidean spaces, Real Anal. Exchange 24 (1998/99), 149–160. (1998/99) MR1691742
- The dual of the Henstock-Kurzweil space, Real Anal. Exchange 22 (1996/97), 105–121. (1996/97) MR1433600
- Integration, Princeton Univ. Press, 1944. (1944) Zbl0060.13010MR0082536
- The space of Henstock integrable functions II, In: New integrals. Proc. Henstock Conf., Coleraine / Ireland, P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer (eds.), 1988. (1988)
- 10.1155/S0161171288000043, Internat. J. Math. Math. Sci. 11 (1988), 15–22. (1988) Zbl0662.26003MR0918213DOI10.1155/S0161171288000043
- Theory of the Integral, second edition, New York, 1964 63.0183.05. (1964 63.0183.05) MR0167578
- 10.1112/jlms/s1-23.1.28, J. London Math. Soc. 23 (1948), 28–34. (1948) Zbl0031.29201MR0026113DOI10.1112/jlms/s1-23.1.28
- On multiple integration by parts and the second theorem of the mean, Proc. London Math. Soc. 16 (1918), 273–293. (1918)
Citations in EuDML Documents
top- Lee Tuo-Yeong, Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space
- Tuo-Yeong Lee, A multidimensional integration by parts formula for the Henstock-Kurzweil integral
- Tuo-Yeong Lee, Bounded linear functionals on the space of Henstock-Kurzweil integrable functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.