AANR spaces and absolute retracts for tree-like continua
Janusz Jerzy Charatonik; Janusz R. Prajs
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 877-891
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCharatonik, Janusz Jerzy, and Prajs, Janusz R.. "AANR spaces and absolute retracts for tree-like continua." Czechoslovak Mathematical Journal 55.4 (2005): 877-891. <http://eudml.org/doc/30995>.
@article{Charatonik2005,
abstract = {Continua that are approximative absolute neighborhood retracts (AANR’s) are characterized as absolute terminal retracts, i.e., retracts of continua in which they are embedded as terminal subcontinua. This implies that any AANR continuum has a dense arc component, and that any ANR continuum is an absolute terminal retract. It is proved that each absolute retract for any of the classes of: tree-like continua, $\lambda $-dendroids, dendroids, arc-like continua and arc-like $\lambda $-dendroids is an approximative absolute retract (so it is an AANR). Consequently, all these continua have the fixed point property, which is a new result for absolute retracts for tree-like continua. Related questions are asked.},
author = {Charatonik, Janusz Jerzy, Prajs, Janusz R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {AANR; absolute retract; arc component; arc-like; continuum; decomposable; dendroid; hereditarily unicoherent; retraction; terminal continuum; tree-like; AANR; absolute retract; arc component; arc-like; continuum; decomposable; dendroid},
language = {eng},
number = {4},
pages = {877-891},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {AANR spaces and absolute retracts for tree-like continua},
url = {http://eudml.org/doc/30995},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Charatonik, Janusz Jerzy
AU - Prajs, Janusz R.
TI - AANR spaces and absolute retracts for tree-like continua
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 877
EP - 891
AB - Continua that are approximative absolute neighborhood retracts (AANR’s) are characterized as absolute terminal retracts, i.e., retracts of continua in which they are embedded as terminal subcontinua. This implies that any AANR continuum has a dense arc component, and that any ANR continuum is an absolute terminal retract. It is proved that each absolute retract for any of the classes of: tree-like continua, $\lambda $-dendroids, dendroids, arc-like continua and arc-like $\lambda $-dendroids is an approximative absolute retract (so it is an AANR). Consequently, all these continua have the fixed point property, which is a new result for absolute retracts for tree-like continua. Related questions are asked.
LA - eng
KW - AANR; absolute retract; arc component; arc-like; continuum; decomposable; dendroid; hereditarily unicoherent; retraction; terminal continuum; tree-like; AANR; absolute retract; arc component; arc-like; continuum; decomposable; dendroid
UR - http://eudml.org/doc/30995
ER -
References
top- Continua as remainders in compact extensions, Nieuw Arch. Wisk. 15 (1967), 34–37. (1967) MR0214033
- A tree-like continuum without the fixed point property, Houston J. Math. 6 (1980), 1–13. (1980) Zbl0473.54020MR0575909
- A theorem on fixed points, Bull. Acad. Polon. Sci., Cl. III 2 (1954), 17–20. (1954) Zbl0057.39103MR0064393
- Theory of Retracts, PWN, Warszawa, 1967. (1967) Zbl0153.52905MR0216473
- 10.1216/rmjm/1181069893, Rocky Mountain J. Math. 34 (2004), 83–110. (2004) MR2061119DOI10.1216/rmjm/1181069893
- 10.4064/cm97-1-6, Colloq. Math 97 (2003), 49–65. (2003) MR2010542DOI10.4064/cm97-1-6
- Several old and new problems in continuum theory, Topology Proc. 25 (Summer 2000), 31–41. (Summer 2000) MR1925676
- 10.4064/fm-70-2-117-130, Fund. Math. 70 (1971), 117–130. (1971) Zbl0231.54012MR0286081DOI10.4064/fm-70-2-117-130
- Shape Theory (Lecture Notes in Math. vol. 688), Springer-Verlag, Berlin-Heidelberg-New York, 1978. (1978) MR0520227
- 10.4064/fm-72-3-223-231, Fund. Math. 72 (1971), 223–231. (1971) MR0296905DOI10.4064/fm-72-3-223-231
- 10.4064/fm-71-2-113-125, Fund. Math. 71 (1971), 113–125. (1971) Zbl0214.49701MR0296904DOI10.4064/fm-71-2-113-125
- 10.4064/fm-71-3-255-262, Fund. Math. 71 (1971), 255–262. (1971) Zbl0226.54030MR0296906DOI10.4064/fm-71-3-255-262
- On approximative retracts, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 9–14. (1968) Zbl0153.53102MR0227916
- Fixed point theorems for approximative ANR-s, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 15–19. (1968) MR0227917
- 10.1090/conm/117/1112805, Contemporary Math. 117 (1991), 79–86. (1991) Zbl0738.54011MR1112805DOI10.1090/conm/117/1112805
- 10.1090/S0002-9939-1951-0039993-2, Proc. Amer. Math. Soc. 2 (1951), 173–174. (1951) Zbl0054.07003MR0039993DOI10.1090/S0002-9939-1951-0039993-2
- Theory of Retracts, Wayne State University Press, Detroit, 1965. (1965) Zbl0145.43003MR0181977
- Hyperspaces, M. Dekker, New York-Basel, 1999. (1999) MR1670250
- -sets and mappings of continua, Topology Proc. 7 (1982), 83–90. (1982) Zbl0517.54027MR0696623
- The condensation of singularities in arc-like continua, Houston J. Math. 11 (1985), 535–558. (1985) MR0837992
- 10.4064/fm-127-3-177-186, Fund. Math. 127 (1987), 177–186. (1987) MR0917143DOI10.4064/fm-127-3-177-186
- Continuous mappings of continua II, Dissertationes Math. (Rozprawy Mat.) 225 (1984), 1–57. (1984) MR0739739
- 10.4064/fm-91-2-105-121, Fund. Math. 91 (1976), 105–121. (1976) MR0413062DOI10.4064/fm-91-2-105-121
- Shape Theory, North-Holland, Amsterdam-New York-Oxford, 1982. (1982) MR0676973
- Infinite-Dimensional Topology, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1989. (1989) Zbl0663.57001MR0977744
- Continuum Theory, M. Dekker, New York-Basel-Hong Kong, 1992. (1992) Zbl0757.54009MR1192552
- A generalization of absolute neighborhood retracts, Kodai Math. Seminar Reports 1 (1953), 20–22. (1953) Zbl0052.18803MR0056279
- The position of -sets in semigroups, Proc. Amer. Math. Soc. 6 (1955), 639–642. (1955) Zbl0068.02403MR0071709
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.