A Computational Solution for a Matrix Riccati Differential Equation.
A class of degree four differential systems that have an invariant conic , , is examined. We show the coexistence of small amplitude limit cycles, large amplitude limit cycles, and invariant algebraic curves under perturbations of the coefficients of the systems.
The presented contribution maps the possibilities of exploitation of the massive parallel computational hardware (namely GPU) for solution of the initial value problems of ordinary differential equations. Two cases are discussed: parallel solution of a single ODE and parallel execution of scalar ODE solvers. Whereas the advantages of the special architecture in the case of a single ODE are problematic, repeated solution of a single ODE for different data can profit from the parallel...