Nonlinear evolution inclusions arising from phase change models
Pierluigi Colli; Pavel Krejčí; Elisabetta Rocca; Jürgen Sprekels
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 4, page 1067-1098
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topColli, Pierluigi, et al. "Nonlinear evolution inclusions arising from phase change models." Czechoslovak Mathematical Journal 57.4 (2007): 1067-1098. <http://eudml.org/doc/31183>.
@article{Colli2007,
abstract = {The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.},
author = {Colli, Pierluigi, Krejčí, Pavel, Rocca, Elisabetta, Sprekels, Jürgen},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear and nonlocal evolution equations; Cahn-Hilliard type dynamics; phase transitions models; existence; uniqueness; long-time behaviour; Cahn-Hilliard type dynamics; phase transitions models},
language = {eng},
number = {4},
pages = {1067-1098},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear evolution inclusions arising from phase change models},
url = {http://eudml.org/doc/31183},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Colli, Pierluigi
AU - Krejčí, Pavel
AU - Rocca, Elisabetta
AU - Sprekels, Jürgen
TI - Nonlinear evolution inclusions arising from phase change models
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 1067
EP - 1098
AB - The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.
LA - eng
KW - nonlinear and nonlocal evolution equations; Cahn-Hilliard type dynamics; phase transitions models; existence; uniqueness; long-time behaviour; Cahn-Hilliard type dynamics; phase transitions models
UR - http://eudml.org/doc/31183
ER -
References
top- A Primer of Nonlinear Analysis. Cambridge Stud. Adv. Math., Vol. 34, Cambridge Univ. Press, Cambridge, 1995. (1995) MR1336591
- Applied Nonlinear Analysis, John Wiley & Sons, New York, 1984. (1984) MR0749753
- Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. (1976) Zbl0328.47035MR0390843
- 10.1016/j.jde.2004.07.003, J. Differ. Equations 212 (2005), 235–277. (2005) MR2129092DOI10.1016/j.jde.2004.07.003
- Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies, Vol. 5, North-Holland, Amsterdam, 1973. (1973) MR0348562
- Hysteresis and Phase Transitions. Appl. Math. Sci., Vol. 121, Springer-Verlag, New York, 1996. (1996) MR1411908
- Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258–267. (1958)
- Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl. 10 (2000), 821–849. (2000) MR1807453
- 10.1007/BF03167565, Japan J. Indust. Appl. Math. 9 (1992), 181–203. (1992) Zbl0757.34051MR1170721DOI10.1007/BF03167565
- 10.1080/03605309908820706, Comm. Partial Differential Equations 15 (1990), 737–756. (1990) MR1070845DOI10.1080/03605309908820706
- Linear Operators. Part I. General Theory, Interscience Publishers, New York, 1958. (1958) MR1009162
- Transmission problems arising in Czochralski process of crystal growth, In: Mathematical Aspects of Modelling Structure Formation Phenomena. GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 17, N. Kenmochi, M. Niezgódka, and M. Ôtani (eds.), Gakkotosho, Tokyo, 2001, pp. 228–243. (2001) MR1932116
- On a nonlocal model of non-isothermal phase separation, Adv. Math. Sci. Appl. 12 (2002), 569–586. (2002) Zbl1039.80001MR1943981
- 10.1016/S0022-247X(02)00425-0, J. Math. Anal. Appl. 286 (2003), 11–31. (2003) MR2009615DOI10.1016/S0022-247X(02)00425-0
- Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits, J. Statist. Phys. 87 (1997), 37–61. (1997) MR1453735
- 10.1137/S0036139996313046, SIAM J. Appl. Math. 58 (1998), 1707–1729. (1998) MR1638739DOI10.1137/S0036139996313046
- Systèmes dynamiques dissipatifs et applications. Rech. Math. Appl., Vol. 17, Masson, Paris, 1991. (1991) MR1084372
- Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., Vol. 31, Am. Math. Soc., Providence, 1957. (1957) MR0089373
- 10.1006/jdeq.1995.1056, J. Differ. Equations 117 (1995), 320–356. (1995) MR1325801DOI10.1006/jdeq.1995.1056
- Generalized Cahn-Hilliard equations based on a microforce balance, J. Appl. Math. 4 (2003), 165–185. (2003) Zbl1031.35003MR1981620
- Variational methods in the Stefan problem, In: Phase Transitions and Hysteresis. Lecture Notes in Math., Vol. 1584, A. Visintin (ed.), Springer-Verlag, Berlin, 1994, pp. 147–212. (1994) Zbl0819.35154MR1321833
- Principles of Functional Analysis, Academic Press, New York-London, 1971. (1971) Zbl0211.14501MR0445263
- Compact sets in the space , Ann. Mat. Pura Appl. 146 (1987), 65–96. (1987) MR0916688
- Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.