Nonlinear evolution inclusions arising from phase change models

Pierluigi Colli; Pavel Krejčí; Elisabetta Rocca; Jürgen Sprekels

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 4, page 1067-1098
  • ISSN: 0011-4642

Abstract

top
The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.

How to cite

top

Colli, Pierluigi, et al. "Nonlinear evolution inclusions arising from phase change models." Czechoslovak Mathematical Journal 57.4 (2007): 1067-1098. <http://eudml.org/doc/31183>.

@article{Colli2007,
abstract = {The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.},
author = {Colli, Pierluigi, Krejčí, Pavel, Rocca, Elisabetta, Sprekels, Jürgen},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear and nonlocal evolution equations; Cahn-Hilliard type dynamics; phase transitions models; existence; uniqueness; long-time behaviour; Cahn-Hilliard type dynamics; phase transitions models},
language = {eng},
number = {4},
pages = {1067-1098},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear evolution inclusions arising from phase change models},
url = {http://eudml.org/doc/31183},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Colli, Pierluigi
AU - Krejčí, Pavel
AU - Rocca, Elisabetta
AU - Sprekels, Jürgen
TI - Nonlinear evolution inclusions arising from phase change models
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 1067
EP - 1098
AB - The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.
LA - eng
KW - nonlinear and nonlocal evolution equations; Cahn-Hilliard type dynamics; phase transitions models; existence; uniqueness; long-time behaviour; Cahn-Hilliard type dynamics; phase transitions models
UR - http://eudml.org/doc/31183
ER -

References

top
  1. A Primer of Nonlinear Analysis. Cambridge Stud. Adv. Math., Vol. 34, Cambridge Univ. Press, Cambridge, 1995. (1995) MR1336591
  2. Applied Nonlinear Analysis, John Wiley & Sons, New York, 1984. (1984) MR0749753
  3. Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. (1976) Zbl0328.47035MR0390843
  4. 10.1016/j.jde.2004.07.003, J. Differ. Equations 212 (2005), 235–277. (2005) MR2129092DOI10.1016/j.jde.2004.07.003
  5. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies, Vol.  5, North-Holland, Amsterdam, 1973. (1973) MR0348562
  6. Hysteresis and Phase Transitions. Appl. Math. Sci., Vol.  121, Springer-Verlag, New York, 1996. (1996) MR1411908
  7. Free energy of a nonuniform system. I.  Interfacial free energy, J. Chem. Phys. 28 (1958), 258–267. (1958) 
  8. Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl. 10 (2000), 821–849. (2000) MR1807453
  9. 10.1007/BF03167565, Japan J.  Indust. Appl. Math. 9 (1992), 181–203. (1992) Zbl0757.34051MR1170721DOI10.1007/BF03167565
  10. 10.1080/03605309908820706, Comm. Partial Differential Equations 15 (1990), 737–756. (1990) MR1070845DOI10.1080/03605309908820706
  11. Linear Operators. Part  I. General Theory, Interscience Publishers, New York, 1958. (1958) MR1009162
  12. Transmission problems arising in Czochralski process of crystal growth, In: Mathematical Aspects of Modelling Structure Formation Phenomena. GAKUTO Internat. Ser. Math. Sci. Appl., Vol.  17, N. Kenmochi, M. Niezgódka, and M. Ôtani (eds.), Gakkotosho, Tokyo, 2001, pp. 228–243. (2001) MR1932116
  13. On a nonlocal model of non-isothermal phase separation, Adv. Math. Sci. Appl. 12 (2002), 569–586. (2002) Zbl1039.80001MR1943981
  14. 10.1016/S0022-247X(02)00425-0, J.  Math. Anal. Appl. 286 (2003), 11–31. (2003) MR2009615DOI10.1016/S0022-247X(02)00425-0
  15. Phase segregation dynamics in particle systems with long range interactions. I.  Macroscopic limits, J.  Statist. Phys. 87 (1997), 37–61. (1997) MR1453735
  16. 10.1137/S0036139996313046, SIAM J.  Appl. Math. 58 (1998), 1707–1729. (1998) MR1638739DOI10.1137/S0036139996313046
  17. Systèmes dynamiques dissipatifs et applications. Rech. Math. Appl., Vol.  17, Masson, Paris, 1991. (1991) MR1084372
  18. Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., Vol. 31, Am. Math. Soc., Providence, 1957. (1957) MR0089373
  19. 10.1006/jdeq.1995.1056, J. Differ. Equations 117 (1995), 320–356. (1995) MR1325801DOI10.1006/jdeq.1995.1056
  20. Generalized Cahn-Hilliard equations based on a microforce balance, J.  Appl. Math. 4 (2003), 165–185. (2003) Zbl1031.35003MR1981620
  21. Variational methods in the Stefan problem, In: Phase Transitions and Hysteresis. Lecture Notes in Math., Vol.  1584, A. Visintin (ed.), Springer-Verlag, Berlin, 1994, pp. 147–212. (1994) Zbl0819.35154MR1321833
  22. Principles of Functional Analysis, Academic Press, New York-London, 1971. (1971) Zbl0211.14501MR0445263
  23. Compact sets in the space  L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. 146 (1987), 65–96. (1987) MR0916688
  24. Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.