# Symmetry of iteration graphs

Walter Carlip; Martina Mincheva

Czechoslovak Mathematical Journal (2008)

- Volume: 58, Issue: 1, page 131-145
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topCarlip, Walter, and Mincheva, Martina. "Symmetry of iteration graphs." Czechoslovak Mathematical Journal 58.1 (2008): 131-145. <http://eudml.org/doc/31203>.

@article{Carlip2008,

abstract = {We examine iteration graphs of the squaring function on the rings $\mathbb \{Z\}/n\mathbb \{Z\}$ when $n = 2^\{k\}p$, for $p$ a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when $k=3$ and when $k\ge 5$ and are symmetric when $k = 4$.},

author = {Carlip, Walter, Mincheva, Martina},

journal = {Czechoslovak Mathematical Journal},

keywords = {digraph; iteration digraph; quadratic map; tree; cycle; digraph; iteration digraph; quadratic map; tree; cycle},

language = {eng},

number = {1},

pages = {131-145},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Symmetry of iteration graphs},

url = {http://eudml.org/doc/31203},

volume = {58},

year = {2008},

}

TY - JOUR

AU - Carlip, Walter

AU - Mincheva, Martina

TI - Symmetry of iteration graphs

JO - Czechoslovak Mathematical Journal

PY - 2008

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 58

IS - 1

SP - 131

EP - 145

AB - We examine iteration graphs of the squaring function on the rings $\mathbb {Z}/n\mathbb {Z}$ when $n = 2^{k}p$, for $p$ a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when $k=3$ and when $k\ge 5$ and are symmetric when $k = 4$.

LA - eng

KW - digraph; iteration digraph; quadratic map; tree; cycle; digraph; iteration digraph; quadratic map; tree; cycle

UR - http://eudml.org/doc/31203

ER -

## References

top- On a digraph defined by squaring modulo $n$, Fibonacci Quart. 30 (1992), 322–334. (1992) MR1188735
- 10.1016/0012-365X(86)90024-5, Discrete Math. 61 (1986), 21–26. (1986) MR0850926DOI10.1016/0012-365X(86)90024-5
- Graphviz-open source graph drawing tools, Graph drawing (Petra Mutzel, Michael Jünger, and Sebastian Leipert, eds.), Lecture Notes in Computer Science, vol. 2265, Springer-Verlag, Berlin, 2002, Selected papers from the 9th International Symposium (GD 2001) held in Vienna, September 23–26, 2001, pp. 483–484. (English) (2001) MR1962414
- The GAP Group, Gap-groups, algorithms, and programming, version 4.4, 2005, (http://www.gap-system.org), .
- 10.1016/0012-365X(94)00250-M, Discrete Math. 148 (1996), 317–324. (1996) MR1368298DOI10.1016/0012-365X(94)00250-M
- 10.1023/B:CMAJ.0000042385.93571.58, Czechoslovak Math. J. 54 (2004), 465–485. (2004) MR2059267DOI10.1023/B:CMAJ.0000042385.93571.58
- A discrete iteration in number theory, BDTF Tud. Közl. 8 (1992), 71–91. (1992) Zbl0801.11011
- On the iteration of certain quadratic maps over $\text{GF}\left(p\right)$, Discrete Math. 277 (2004), 219–240. (2004) MR2033734

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.