Angular limits of double layer potentials
Czechoslovak Mathematical Journal (1995)
- Volume: 45, Issue: 2, page 267-292
- ISSN: 0011-4642
Access Full Article
topHow to cite
topKrál, Josef, and Medková, Dagmar. "Angular limits of double layer potentials." Czechoslovak Mathematical Journal 45.2 (1995): 267-292. <http://eudml.org/doc/31464>.
@article{Král1995,
author = {Král, Josef, Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {double layer potential; angular limits; locally finite perimeter; geometric conditions},
language = {eng},
number = {2},
pages = {267-292},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Angular limits of double layer potentials},
url = {http://eudml.org/doc/31464},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Král, Josef
AU - Medková, Dagmar
TI - Angular limits of double layer potentials
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 2
SP - 267
EP - 292
LA - eng
KW - double layer potential; angular limits; locally finite perimeter; geometric conditions
UR - http://eudml.org/doc/31464
ER -
References
top- Some problems of potential theory and function theory for domains with nonregular boundaries, Zapiski Naučnych Seminarov LOMI 3 (1967). (Russian) (1967)
- Tricomi potencials, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha, 1988. (Slovak) (1988)
- Non-tangential limits of the double layer potentials, Časopis pro pěstování matematiky 97 (1972), 231–258. (1972) Zbl0237.31012MR0444975
- 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44–76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
- Geometrie Measure Theory, Springer-Verlag, 1969. (1969)
- On the logarithmic potential, Comment. Math. Univ. Carolinae 3 (1962), no. 1, 3–10. (1962) MR0159008
- 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503DOI10.2307/1994580
- Limits of double layer potentials, Accad. Naz. dei Lincei, Rendiconti Cl. Sci. fis. mat. e. natur., ser. 8, vol. 48 (1970), 39–42. (1970) MR0274788
- Flows of heat and the Fourier problem, Czechoslovak Math. J. 20(95) (1970), 556–598. (1970) MR0271554
- On boundary behaviour of double layer potentials, Trudy Seminara S.L. Soboleva, Novosibirsk, 1976, pp. 19–34. (Russian) (1976)
- Integral Operators in Potential Theory, Lecture Notes in Math., vol. 823, Springer-Verlag, 1980. (1980) MR0590244
- Integrals of the Cauchy type, Czechoslovak Math. J. 22 (1972), 663–682. (1972) MR0338377
- A note on integral of the Cauchy type, Comment. Math. Univ. Carolinae 9 (1968), 563–570. (1968) MR0243011
- 10.1090/trans2/131/10, Amer. Math. Soc. Transl. 131 (1986), no. 2, 109–120. (1986) DOI10.1090/trans2/131/10
- Boundary Integral Equations, in Analysis IV, Encyclopaedia of Mathematical Sciences, vol. 27, Springer-Verlag, 1991. (1991)
- Theory of the Integral, Dover Publications, New York, 1964. (1964) MR0167578
- On the limits of the potential of the double distribution, Comment. Math. Univ. Carolinae 10 (1969), no. 2, 189–194. (1969) MR0249654
- Angular limits of double layer potentials (in Czech with an English summary), Časopis pro pěstování matematiky 95 (1970), 379–401. (1970) MR0382676
- Weakly Differentiable Functions, Springer-Verlag, 1989. (1989) Zbl0692.46022MR1014685
Citations in EuDML Documents
top- Josef Král, Dagmar Medková, Angular limits of the integrals of the Cauchy type
- Josef Král, Dagmar Medková, Essential norms of the Neumann operator of the arithmetical mean
- Josef Král, Dagmar Medková, Essential norms of a potential theoretic boundary integral operator in
- Eva Dontová, Miroslav Dont, Josef Král, Reflection and a mixed boundary value problem concerning analytic functions
- Jaroslav Lukeš, Ivan Netuka, Jiří Veselý, In memory of Josef Král
- Jaroslav Lukeš, Ivan Netuka, Jiří Veselý, In memory of Josef Král
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.