Semigroups and Hilbert's fifth problem

Karl Heinrich Hofmann

Mathematica Slovaca (1994)

  • Volume: 44, Issue: 3, page 365-377
  • ISSN: 0232-0525

How to cite

top

Hofmann, Karl Heinrich. "Semigroups and Hilbert's fifth problem." Mathematica Slovaca 44.3 (1994): 365-377. <http://eudml.org/doc/31812>.

@article{Hofmann1994,
author = {Hofmann, Karl Heinrich},
journal = {Mathematica Slovaca},
keywords = {Hilbert's fifth problem; Abel's problem; locally compact groups; locally Euclidean local group; local Lie group; analytic semigroups},
language = {eng},
number = {3},
pages = {365-377},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Semigroups and Hilbert's fifth problem},
url = {http://eudml.org/doc/31812},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Hofmann, Karl Heinrich
TI - Semigroups and Hilbert's fifth problem
JO - Mathematica Slovaca
PY - 1994
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 44
IS - 3
SP - 365
EP - 377
LA - eng
KW - Hilbert's fifth problem; Abel's problem; locally compact groups; locally Euclidean local group; local Lie group; analytic semigroups
UR - http://eudml.org/doc/31812
ER -

References

top
  1. ABEL N. H., Untersuchung der Funktionen zweier unabhängig veränderlicher Großen x and y, wie f(x,y), welche die Eigenschaft haben, daß f(z,f(x,y)) eine symmetrische Funktion von z, x und y ist, J. Reine Angew. Math.1 (1826). 11-15. 
  2. ACZÉL J., The State of the second part of Hilbert's Fifth Problem, Bull. Anier. Math. Soc. 20 (1989). 153-163. (1989) Zbl0676.39004MR0981872
  3. BOREL A., Deane Montgomery 1909-1992, Notices Anier. Math. Soc. 39 (1992). 684-687. (1992) Zbl1194.01066MR1180013
  4. BROWN D. R., HOUSTON. R. S., Cancellative semigroups on manifolds, Semigroup Forum 35 (1987). 279-302. (1987) Zbl0626.22001MR0900105
  5. COMFORT W. W., HOFMANN. K. H., REMUS D., Topological groups and semigroups, In: Recent Progress in General Topology (M. Hušek and J. van Mill. eds.). Elsevier 1992, pp. 57-144. (1992) Zbl0798.22001MR1229123
  6. GLEASON. A. M., Groups without small subgroups, Ann. of Math. 56 (1952). 193-212. (1952) Zbl0049.30105MR0049203
  7. GRUNDHÖFFER T., SALZMANN H., STROPPEL M.: M., Compact Projective Plains, (In preparation). 
  8. HILGERT J., HOFMANN. K. H., LAWSON. J. D., Lie groups, convex cones, and semigroups, Oxford university Press, 1989. (1989) Zbl0701.22001MR1032761
  9. HILGERT J., NEEB K.-H., Lie Semigroups and their Applications, Lecture Notes in Math. 1552. Springer-New York-Berlin, 1993. (1993) Zbl0807.22001MR1317811
  10. HOFMANN K. H., MOSTERT P. S., Elements of Compact Semigroups, Charles R. Merrill Books. Columbus. Ohio. 1966. (1966) Zbl0161.01901MR0209387
  11. HOFMANN K. H., WEISS W., More on cancellative semigroups on manifolds, Semigroup Forum 37 (1988), 93-111. (1988) Zbl0635.22003MR0929446
  12. IWASAWA K., On some types of topological groups, Ann. of Math. 50 (1949), 507-557. (1949) Zbl0034.01803MR0029911
  13. JACOBY R., Some theorems on the structure of locally compact local groups, Ann. of Math. 50 (1957), 36-69. (1957) Zbl0084.03202MR0089997
  14. von KOCH H., Sur un curbe continue sans tangente obtenue par une construction géométrique élémentaire, Acta Math. 30 (1906), 145-174. (1906) MR1555026
  15. Mathematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math. XXXVIII. Amer. Math. Soc., Providence, R.I., 1976. (1976) Zbl0326.00002
  16. Deane Montgomery 1909-1992, . Collection of Addresses delivered at the Institute for Advanced Study on November 13, 1992, Inst. Adv. Study, Princeton, 1993. (1992) 
  17. MONTGOMERY D., ZIPPIN L., Small subgroups of finite dimensional groups, Ann. of Math. 56 (1952), 213-241. (1952) Zbl0049.30107MR0049204
  18. NEEB. K.-H., Holomorphic Representation Theory and Coadjoint Orbits of Convexity Type, Habilitationsschrift, Technische Hochschule, Darmstadt, 1993. (1993) 
  19. SCHWARZ S., Remark on bicompact semigroups, Mat.-Fyz. Časopis 5 (1955), 86-89. (1955) MR0077872
  20. SCHWARZ S., On Hausdorff bicompact semigroups, Czechoslovak Math. J. 5(80) (1955), 1-23. (1955) Zbl0068.02301MR0074769
  21. SCHWARZ S., Characters of bicompact semigroups, Czechoslovak Math. J. 5(80) (1955), 24-28. (1955) MR0074770
  22. SCHWARZ S., The theory of characters of commutative Hausdorff bicompact semigroups, Czechoslovak Math. J. 6(81) (1956), 330-364. (1956) MR0092098
  23. SKLJARENKO E. G., Zum 5. Hilbertschen Problem, In: Ostwalds Klassiker Exakt. Wiss. 252. Akad. Verl. Gesellsch., Leipzig, 1987, pp. 21-24. (1987) 
  24. YAMABE H., On the conjecture of Iwasawa and Gleason, Ann. of Math 58 (1953), 48-54. (1953) Zbl0053.01601MR0054613
  25. YAMABE H., Generalization of a theorem of Gleason, Ann. of Math 58 (1953), 351-365. (1953) Zbl0053.01602MR0058607
  26. HOFMANN K. H., LAWSON J. D., Linearly ordered semigroups: A historical overview, In: Progress in Semigroups and Related Areas (K. H. Hofmann and M. Mislove, eds.), 1994 (To appear). (1994) MR0376461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.