On the lattice group valued submeasures

Peter Volauf

Mathematica Slovaca (1990)

  • Volume: 40, Issue: 4, page 407-411
  • ISSN: 0139-9918

How to cite

top

Volauf, Peter. "On the lattice group valued submeasures." Mathematica Slovaca 40.4 (1990): 407-411. <http://eudml.org/doc/31882>.

@article{Volauf1990,
author = {Volauf, Peter},
journal = {Mathematica Slovaca},
keywords = {lattice group; weakly -distributive Dedekind complete l-group; submeasure; continuum hypothesis; Banach-Kuratowski theorem},
language = {eng},
number = {4},
pages = {407-411},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the lattice group valued submeasures},
url = {http://eudml.org/doc/31882},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Volauf, Peter
TI - On the lattice group valued submeasures
JO - Mathematica Slovaca
PY - 1990
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 40
IS - 4
SP - 407
EP - 411
LA - eng
KW - lattice group; weakly -distributive Dedekind complete l-group; submeasure; continuum hypothesis; Banach-Kuratowski theorem
UR - http://eudml.org/doc/31882
ER -

References

top
  1. BIRKNOFF G., Lattice Theory, Зrd ed. Providence 1967. (1967) 
  2. LUXEMBURG W. A., ZAANEN A. C., Riesz Spaces 1, North Holland, Amsterdam 1971. (1971) 
  3. RIEČAN B., On measures and integrals with values in ordered groups, Math. Slovaca 33, 1983, No. 2, 153-163. (1983) Zbl0519.28004MR0699085
  4. RIEČANOVÁ Z., On consequences of Banach-Kuratowski theorem for Stone algebra valued measures, Math. Slovaca 39, 1989, No. 1, 91-97. (1989) MR1016335
  5. RIEČAN B., VOLAUF P., On a technical lemma in lattice ordered groups, Acta Math. Univ. Comenianae XLIV-XLV, 1984, 31-35. (1984) Zbl0558.06019MR0775002
  6. STONE M. H., Boundedness properties in function lattices, Canadian J. Math., 1 (1949), 176-186. (1949) Zbl0032.16901MR0029091
  7. VOLAUF P., On extension of maps with values in ordered spaces, Math. Slovaca 30, 1980, No. 4, 351-361. (1980) Zbl0448.28007MR0595295
  8. VALICH B. Z., Introduction to the theory of partially ordered spaces, Wolters-Noordhoff, 1967. (1967) MR0224522
  9. WRIGHT J. D. M., The measure extension problem for vector lattices, Ann. Inst. Fourier, 21, Fasc. 4, Grenoble, 1971, 65-85. (1971) Zbl0215.48101MR0330411
  10. WRIGHT J. D. M., An algebraic characterization of vector lattices with the Borel regularity property, J. London Math. Soc. (2), 7 (1973), 277-285. (1973) Zbl0266.46036MR0333116
  11. WRIGHT J. D. M., An extension theorem, J. London Math. Soc. (2), 7 (1973), 531-539. (1973) MR0344414

NotesEmbed ?

top

You must be logged in to post comments.