Every normal linear system has a regular time-optimal synthesis

Pavol Brunovský

Mathematica Slovaca (1978)

  • Volume: 28, Issue: 1, page 81-100
  • ISSN: 0139-9918

How to cite

top

Brunovský, Pavol. "Every normal linear system has a regular time-optimal synthesis." Mathematica Slovaca 28.1 (1978): 81-100. <http://eudml.org/doc/32213>.

@article{Brunovský1978,
author = {Brunovský, Pavol},
journal = {Mathematica Slovaca},
language = {eng},
number = {1},
pages = {81-100},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Every normal linear system has a regular time-optimal synthesis},
url = {http://eudml.org/doc/32213},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Brunovský, Pavol
TI - Every normal linear system has a regular time-optimal synthesis
JO - Mathematica Slovaca
PY - 1978
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 28
IS - 1
SP - 81
EP - 100
LA - eng
UR - http://eudml.org/doc/32213
ER -

References

top
  1. ABRAHAM R., ROBBIN J., Tгansveгsal mappings and flows, Benjamin, New Yoгk and Amsteгdam 1967. (1967) MR0240836
  2. БOЛTЯHCKИЙ B. Г., Дocтaтoчныe ycлoвия oптимaльнocги и oбocнoвaниe мeтoдa динaмичecкoгo пpoгpaммиpoвaния, Извecтия AH CCCP, cep. мaт., 28, 1968, 481-514. (1968) 
  3. БOЛTЯHCKИЙ B. Г., Maтeмaтичecкиe мeтoды oптимaльнoгo yпpaвлeния, Hayкa, Mocквa 1969. (1969) 
  4. BRUNOVSKÝ P., The closed-loop time-optimal contгol I: Optimality, SIAM J. Contг., 12, 1974, 624-634. (1974) MR0355719
  5. BRUNOVSKÝ P., MIRICA S., Classical and Filippov solutions of the diffeгential equation defined by the time-optimal feedback contгol, Rev. Roum. Math. Puгes Appl., 20, 1975, 873-883. (1975) MR0377665
  6. HERMES H., Discontinuous vectoг fields and feedback contгol, In: Diffeгential equations and Dynamical systems, J. K. Hale and J. P. LaSalle editoгs, Academic Pгess, New Yoгk and London 1967, 155-165. (1967) MR0222424
  7. HERMES H., LASALLE J. P., Functional analysis and time-optimal contгol, Academic Press, New Yoгk and London 1969. (1969) MR0420366
  8. HIRONAKA H., Introduction aux ensembles sous-analytiques, Asteгisque, 7-8, 1973, 13-20. (1973) MR0355094
  9. KRENER A. J., A generalization of Chow's Theoгem and the bang-bang theoгem to nonlinear contгol pгoblems, SIAM J. Contг., 12, 1974, 43-52. (1974) MR0383206
  10. LEE E. B, MARKUS L., Foundations of optimal control theoгy, Wiley, New York 1967. (1967) MR0220537
  11. MAЗEP, Дж. H. (MATHER J.), Cтpaтификaции и oтoбpaжeния, Уcпexи мaт нayк 27, 1972, 85-118 (1972) MR0385917
  12. SANSONE G., Equazioni differenziale nel campo reale, Bologna 1948, Russian translation Moskva 1953. (1948) 

Citations in EuDML Documents

top
  1. Benedetto Piccoli, Regular time-optimal syntheses for smooth planar systems
  2. Jaromír Kuben, Time-optimal control of two-dimensional systems and regular synthesis
  3. B. Piccoli, Infinite time regular synthesis
  4. Alberto Bressan, Tao Wang, Global optimality conditions for a dynamic blocking problem
  5. Héctor Sussmann, Some optimal control applications of real-analytic stratifications and desingularization
  6. Alberto Bressan, Tao Wang, Global optimality conditions for a dynamic blocking problem
  7. Ugo Boscain, Grégoire Charlot, Resonance of minimizers for n-level quantum systems with an arbitrary cost
  8. Ugo Boscain, Grégoire Charlot, Resonance of minimizers for -level quantum systems with an arbitrary cost

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.