Regular time-optimal syntheses for smooth planar systems

Benedetto Piccoli

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 95, page 59-79
  • ISSN: 0041-8994

How to cite

top

Piccoli, Benedetto. "Regular time-optimal syntheses for smooth planar systems." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 59-79. <http://eudml.org/doc/108398>.

@article{Piccoli1996,
author = {Piccoli, Benedetto},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {time-optimal control; regular synthesis; planar systems},
language = {eng},
pages = {59-79},
publisher = {Seminario Matematico of the University of Padua},
title = {Regular time-optimal syntheses for smooth planar systems},
url = {http://eudml.org/doc/108398},
volume = {95},
year = {1996},
}

TY - JOUR
AU - Piccoli, Benedetto
TI - Regular time-optimal syntheses for smooth planar systems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 59
EP - 79
LA - eng
KW - time-optimal control; regular synthesis; planar systems
UR - http://eudml.org/doc/108398
ER -

References

top
  1. [1] V.G. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming principle, SIAM J. Control and Opt., 4 (1966), pp. 326-361. Zbl0143.32004MR197205
  2. [2] P. Brunovsky, Every normal linear system has a regular time-optimal synethesis, Math. Slovaca, 28 (1978), pp. 81-100. Zbl0369.49013MR527776
  3. [3] P. Brunovsky, Existence of regular synthesis for general problems, J. Diff. Eq., 38 (1980), pp. 317-343. Zbl0417.49030MR605053
  4. [4] P. Hartman, Ordinary Differential Equations, Wiley, New York (1964). Zbl0125.32102MR171038
  5. [5] H. Hermes - J.P. Lasalle, Functional Analysis and Time Optimal Control, Academic Press (1969). Zbl0203.47504MR420366
  6. [6] E.B. Lee - L. MARKUS, Foundations of Optimal Control Theory, Wiley, New York (1967). Zbl0159.13201MR220537
  7. [7] M.M. Peixoto, Generic properties of ordinary differential equations, in Studies in Ordinary Differentials Equations, J. Hale ed., MAA Studies in Mathematics, No. 14, Washington (1977), pp. 52-92. Zbl0375.34026MR474410
  8. [8] M.M. Peixoto, On the Classification of Flows on 2-Manifolds, Proceedings of a Symposium Helded at the University of Bahia, Brasil, 1971, M. M. Peixoto ed., Academic Press, New York (1973), pp. 389-420. Zbl0299.58011MR334289
  9. [9] H.J. Sussmann, Envelopes, conjugate points, and optimal bang-bang extremals, algebraic and geometric methods in nonlinear control theory, M. Fliess and M. Hazewinkel eds., D. Reidel Publishing Company (1986), pp. 325-346. Zbl0619.49017MR862332
  10. [10] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the C∞ nonsingular case, SIAM J. Control and Opt., 25 (1987), pp. 433-465. Zbl0664.93034
  11. [11] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case, SIAM J. Control and Opt., 25 (1987), pp.868-904. Zbl0664.93034MR893988
  12. [12] H.J. Sussmann, Regular synthesis for time-optimal control of single-input real-analytic systems in the plane, SIAM J. Control and Opt., 25 (1987), pp. 1145-1162. Zbl0696.93026MR905037
  13. [13] H.J. Sussmann, Envelopes, Higher-Order Optimality Conditions, and Lie Brackets, Proceedings of the 1989 I.E. E. E. Conference on Decision and Control. MR1038992
  14. [14] H.J. Sussmann, Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets, in Nonlinear Controllability and Optimal Control, H. J. Sussmann ed., Marcel Dekker, New York (1990), pp. 1-19. Zbl0712.49015MR1061381

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.