The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent
Stéphane Louboutin; Hee-Sun Yang; Soun-Hi Kwon
Mathematica Slovaca (2004)
- Volume: 54, Issue: 5, page 535-574
- ISSN: 0139-9918
Access Full Article
topHow to cite
topLouboutin, Stéphane, Yang, Hee-Sun, and Kwon, Soun-Hi. "The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$." Mathematica Slovaca 54.5 (2004): 535-574. <http://eudml.org/doc/32410>.
@article{Louboutin2004,
author = {Louboutin, Stéphane, Yang, Hee-Sun, Kwon, Soun-Hi},
journal = {Mathematica Slovaca},
keywords = {CM-field; class group; quartic field; octic field},
language = {eng},
number = {5},
pages = {535-574},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$},
url = {http://eudml.org/doc/32410},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Louboutin, Stéphane
AU - Yang, Hee-Sun
AU - Kwon, Soun-Hi
TI - The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 5
SP - 535
EP - 574
LA - eng
KW - CM-field; class group; quartic field; octic field
UR - http://eudml.org/doc/32410
ER -
References
top- EARNEST A. G., Exponents of the class groups of imaginary abelian number fields, Bull. Austral. Math. Soc. 35 (1987), 231-245. (1987) Zbl0597.12006MR0878434
- LANG S., Cyclotomic Fields I and II, (combined 2nd ed.). Grad. Texts in Math. 121, Springer-Verlag, New York, 1990. (1990) Zbl0704.11038MR1029028
- LANG S., Algebraic Number Theory, (2nd ed.). Grad. Texts in Math. 110, Springer-Verlag, New York, 1994. (1994) Zbl0811.11001MR1282723
- LOUBOUTIN S.-OKAZAKI R., Determination of all non-normal quartic -fields and of all non-abelian normal octic -fields with class number one, Acta Arith. 67 (1994), 47-62. (1994) Zbl0809.11069MR1292520
- LOUBOUTIN S.-OKAZAKI R., The class number one problem for some nonabelian normal -fields of 2-power degrees, Proc. London Math. Soc. (3) 76 (1998), 523-548. (1998) MR1616805
- LOUBOUTIN S.-OKAZAKI R., Determination of all quaternion -fields with ideal class groups of exponent 2, Osaka J. Math. 36 (1999), 229-257. (1999) Zbl0952.11025MR1736479
- LOUBOUTIN S., Continued fractions and real quadratic fields, J. Number Theory 30 (1988), 167-176. (1988) Zbl0652.12002MR0961914
- LOUBOUTIN S., On the class number one problem for the non-normal quartic -fields, Tohoku Math. J. (2) 46 (1994), 1-12. (1994) MR1256724
- LOUBOUTIN S., Calcul du nombre de classes des corps de nombres, Pacific J. Math. 171 (1995), 455-467. (1995) Zbl0854.11060MR1372239
- LOUBOUTIN S., Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents , , Math. Comp. 64 (1995), 323-340. (1995) MR1248972
- LOUBOUTIN S., The class number one problem for the non-abelian normal -fields of degre 16, Acta Arith. 82 (1997), 173-196. (1997) MR1477509
- LOUBOUTIN S., Powerful necessary conditions for class number problems, Math. Nachr. 183 (1997), 173-184. (1997) Zbl0871.11078MR1434981
- LOUBOUTIN S., Hasse unit indices of dihedral octic -fields, Math. Nachr. 215 (2000), 107-113. Zbl0972.11105MR1768197
- LOUBOUTIN S., Explicit lower bounds for residues at of Dedekind zeta functions and relative class numbers of -fields, Trans. Amer. Math. Soc. 355 (2003), 3079-3098. Zbl1026.11085MR1974676
- MORTON P., On Rédei's theory of the Pell equation, J. Reine Angew. Math. 307/308 (1979), 373-398. (1979) Zbl0395.12018MR0534233
- YANG H.-S.-KWON S.-H., The non-normal quartic -fields and the octic dihedral -fields with relative class number two, J. Number Theory 79 (1999), 175-193. (1999) Zbl0976.11051MR1728146
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.