The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent 2

Stéphane Louboutin; Hee-Sun Yang; Soun-Hi Kwon

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 5, page 535-574
  • ISSN: 0139-9918

How to cite

top

Louboutin, Stéphane, Yang, Hee-Sun, and Kwon, Soun-Hi. "The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$." Mathematica Slovaca 54.5 (2004): 535-574. <http://eudml.org/doc/32410>.

@article{Louboutin2004,
author = {Louboutin, Stéphane, Yang, Hee-Sun, Kwon, Soun-Hi},
journal = {Mathematica Slovaca},
keywords = {CM-field; class group; quartic field; octic field},
language = {eng},
number = {5},
pages = {535-574},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$},
url = {http://eudml.org/doc/32410},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Louboutin, Stéphane
AU - Yang, Hee-Sun
AU - Kwon, Soun-Hi
TI - The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 5
SP - 535
EP - 574
LA - eng
KW - CM-field; class group; quartic field; octic field
UR - http://eudml.org/doc/32410
ER -

References

top
  1. EARNEST A. G., Exponents of the class groups of imaginary abelian number fields, Bull. Austral. Math. Soc. 35 (1987), 231-245. (1987) Zbl0597.12006MR0878434
  2. LANG S., Cyclotomic Fields I and II, (combined 2nd ed.). Grad. Texts in Math. 121, Springer-Verlag, New York, 1990. (1990) Zbl0704.11038MR1029028
  3. LANG S., Algebraic Number Theory, (2nd ed.). Grad. Texts in Math. 110, Springer-Verlag, New York, 1994. (1994) Zbl0811.11001MR1282723
  4. LOUBOUTIN S.-OKAZAKI R., Determination of all non-normal quartic C M -fields and of all non-abelian normal octic C M -fields with class number one, Acta Arith. 67 (1994), 47-62. (1994) Zbl0809.11069MR1292520
  5. LOUBOUTIN S.-OKAZAKI R., The class number one problem for some nonabelian normal C M -fields of 2-power degrees, Proc. London Math. Soc. (3) 76 (1998), 523-548. (1998) MR1616805
  6. LOUBOUTIN S.-OKAZAKI R., Determination of all quaternion C M -fields with ideal class groups of exponent 2, Osaka J. Math. 36 (1999), 229-257. (1999) Zbl0952.11025MR1736479
  7. LOUBOUTIN S., Continued fractions and real quadratic fields, J. Number Theory 30 (1988), 167-176. (1988) Zbl0652.12002MR0961914
  8. LOUBOUTIN S., On the class number one problem for the non-normal quartic C M -fields, Tohoku Math. J. (2) 46 (1994), 1-12. (1994) MR1256724
  9. LOUBOUTIN S., Calcul du nombre de classes des corps de nombres, Pacific J. Math. 171 (1995), 455-467. (1995) Zbl0854.11060MR1372239
  10. LOUBOUTIN S., Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents < 2 , , Math. Comp. 64 (1995), 323-340. (1995) MR1248972
  11. LOUBOUTIN S., The class number one problem for the non-abelian normal C M -fields of degre 16, Acta Arith. 82 (1997), 173-196. (1997) MR1477509
  12. LOUBOUTIN S., Powerful necessary conditions for class number problems, Math. Nachr. 183 (1997), 173-184. (1997) Zbl0871.11078MR1434981
  13. LOUBOUTIN S., Hasse unit indices of dihedral octic C M -fields, Math. Nachr. 215 (2000), 107-113. Zbl0972.11105MR1768197
  14. LOUBOUTIN S., Explicit lower bounds for residues at s = 1 of Dedekind zeta functions and relative class numbers of C M -fields, Trans. Amer. Math. Soc. 355 (2003), 3079-3098. Zbl1026.11085MR1974676
  15. MORTON P., On Rédei's theory of the Pell equation, J. Reine Angew. Math. 307/308 (1979), 373-398. (1979) Zbl0395.12018MR0534233
  16. YANG H.-S.-KWON S.-H., The non-normal quartic C M -fields and the octic dihedral C M -fields with relative class number two, J. Number Theory 79 (1999), 175-193. (1999) Zbl0976.11051MR1728146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.