A posteriori error estimation and adaptivity in the method of lines with mixed finite elements

Jan Brandts

Applications of Mathematics (1999)

  • Volume: 44, Issue: 6, page 407-419
  • ISSN: 0862-7940

Abstract

top
We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.

How to cite

top

Brandts, Jan. "A posteriori error estimation and adaptivity in the method of lines with mixed finite elements." Applications of Mathematics 44.6 (1999): 407-419. <http://eudml.org/doc/33039>.

@article{Brandts1999,
abstract = {We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.},
author = {Brandts, Jan},
journal = {Applications of Mathematics},
keywords = {superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement; superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement},
language = {eng},
number = {6},
pages = {407-419},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A posteriori error estimation and adaptivity in the method of lines with mixed finite elements},
url = {http://eudml.org/doc/33039},
volume = {44},
year = {1999},
}

TY - JOUR
AU - Brandts, Jan
TI - A posteriori error estimation and adaptivity in the method of lines with mixed finite elements
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 6
SP - 407
EP - 419
AB - We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.
LA - eng
KW - superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement; superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement
UR - http://eudml.org/doc/33039
ER -

References

top
  1. 10.1007/BF01385737, Numer. Math. 65 (1993), 1–21. (1993) MR1217436DOI10.1007/BF01385737
  2. 10.1137/0909045, SIAM J. Sci. Stat. Comput. 9(4) (1988), 687–703. (1988) Zbl0659.65081MR0945932DOI10.1137/0909045
  3. 10.1007/s002110050064, Numer. Math. 68(3) (1994), 311–324. (1994) Zbl0823.65103MR1313147DOI10.1007/s002110050064
  4. Superconvergence for triangular order k = 1 Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods, Appl. Numer. Math. (1996), to appear (accepted). Zbl0948.65120MR1755693
  5. 10.1023/A:1022220219953, Appl. Math. 44(1) (1999), 43–53. (1999) Zbl1059.65518MR1666846DOI10.1023/A:1022220219953
  6. 10.1090/S0025-5718-1985-0771029-9, Math. Comp. 44(169) (1985), 39–52. (1985) MR0771029DOI10.1090/S0025-5718-1985-0771029-9
  7. 10.1007/BF01385626, Numer. Math. 58 (1990), 2–15. (1990) MR1075159DOI10.1007/BF01385626
  8. 10.1137/0728003, SIAM J. Numer. Anal. 28 (1991), 43–77. (1991) MR1083324DOI10.1137/0728003
  9. 10.1137/0732033, SIAM J. Numer. Anal. 32 (1995), 706–740. (1995) MR1335652DOI10.1137/0732033
  10. Adaptive finite element methods for parabolic problems III: Time steps variable in space, Manuscript. 
  11. 10.1137/0732078, SIAM J. Numer. Anal. 32 (1995), 1729–1749. (1995) MR1360457DOI10.1137/0732078
  12. 10.1137/0732079, SIAM J. Numer. Anal. 32 (1995), 1750–1763. (1995) MR1360458DOI10.1137/0732079
  13. 10.1137/S0036142996310216, SIAM J. Numer. Anal. 35(4) (1998), 1315–1325. (1998) MR1620144DOI10.1137/S0036142996310216
  14. 10.1137/0732001, SIAM J. Numer. Anal. 32(1) (1995), 1–48. (1995) Zbl0820.65052MR1313704DOI10.1137/0732001
  15. 10.1137/0727019, SIAM J. Numer. Anal. 27(2) (1990), 277–291. (1990) MR1043607DOI10.1137/0727019
  16. Finite element methods: superconvergence, post-processing and a posteriori estimates, Proc. Conf. Univ. of Jyväskylä, 1996, Lecture Notes in Pure and Applied Mathematics volume 196, Marcel Dekker, New York, 1998. (1998) MR1602809
  17. 10.1137/0912031, SIAM J. Sci. Stat. Comput. 12(3) (1991), 573–594. (1991) MR1093207DOI10.1137/0912031
  18. 10.1137/0913064, SIAM J. Sci. Stat. Comput. 13(5) (1992), 1097–1122. (1992) Zbl0762.65081MR1177800DOI10.1137/0913064
  19. 10.1016/0377-0427(93)90093-Q, J. Comp. Appl. Math. 47 (1993), 101–121. (1993) Zbl0784.65091MR1226366DOI10.1016/0377-0427(93)90093-Q
  20. 10.1137/S0036142995280808, SIAM J. Numer. Anal. 35(2) (1998), 712–727. (1998) Zbl1096.76516MR1618886DOI10.1137/S0036142995280808
  21. A mixed finite element method for second order elliptic problems, Lecture Notes in Mathematics 606, 1977, pp. 292–315. (1977) MR0483555
  22. Mathematical Theory of Finite and Boundary Element Methods, Birkhäuser Verlag, Basel, 1990. (1990) MR1116555
  23. Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics 1054, Springer Verlag, New York, 1998. (1998) MR0744045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.