A posteriori error estimation and adaptivity in the method of lines with mixed finite elements
Applications of Mathematics (1999)
- Volume: 44, Issue: 6, page 407-419
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBrandts, Jan. "A posteriori error estimation and adaptivity in the method of lines with mixed finite elements." Applications of Mathematics 44.6 (1999): 407-419. <http://eudml.org/doc/33039>.
@article{Brandts1999,
abstract = {We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.},
author = {Brandts, Jan},
journal = {Applications of Mathematics},
keywords = {superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement; superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement},
language = {eng},
number = {6},
pages = {407-419},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A posteriori error estimation and adaptivity in the method of lines with mixed finite elements},
url = {http://eudml.org/doc/33039},
volume = {44},
year = {1999},
}
TY - JOUR
AU - Brandts, Jan
TI - A posteriori error estimation and adaptivity in the method of lines with mixed finite elements
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 6
SP - 407
EP - 419
AB - We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.
LA - eng
KW - superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement; superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement
UR - http://eudml.org/doc/33039
ER -
References
top- 10.1007/BF01385737, Numer. Math. 65 (1993), 1–21. (1993) MR1217436DOI10.1007/BF01385737
- 10.1137/0909045, SIAM J. Sci. Stat. Comput. 9(4) (1988), 687–703. (1988) Zbl0659.65081MR0945932DOI10.1137/0909045
- 10.1007/s002110050064, Numer. Math. 68(3) (1994), 311–324. (1994) Zbl0823.65103MR1313147DOI10.1007/s002110050064
- Superconvergence for triangular order Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods, Appl. Numer. Math. (1996), to appear (accepted). Zbl0948.65120MR1755693
- 10.1023/A:1022220219953, Appl. Math. 44(1) (1999), 43–53. (1999) Zbl1059.65518MR1666846DOI10.1023/A:1022220219953
- 10.1090/S0025-5718-1985-0771029-9, Math. Comp. 44(169) (1985), 39–52. (1985) MR0771029DOI10.1090/S0025-5718-1985-0771029-9
- 10.1007/BF01385626, Numer. Math. 58 (1990), 2–15. (1990) MR1075159DOI10.1007/BF01385626
- 10.1137/0728003, SIAM J. Numer. Anal. 28 (1991), 43–77. (1991) MR1083324DOI10.1137/0728003
- 10.1137/0732033, SIAM J. Numer. Anal. 32 (1995), 706–740. (1995) MR1335652DOI10.1137/0732033
- Adaptive finite element methods for parabolic problems III: Time steps variable in space, Manuscript.
- 10.1137/0732078, SIAM J. Numer. Anal. 32 (1995), 1729–1749. (1995) MR1360457DOI10.1137/0732078
- 10.1137/0732079, SIAM J. Numer. Anal. 32 (1995), 1750–1763. (1995) MR1360458DOI10.1137/0732079
- 10.1137/S0036142996310216, SIAM J. Numer. Anal. 35(4) (1998), 1315–1325. (1998) MR1620144DOI10.1137/S0036142996310216
- 10.1137/0732001, SIAM J. Numer. Anal. 32(1) (1995), 1–48. (1995) Zbl0820.65052MR1313704DOI10.1137/0732001
- 10.1137/0727019, SIAM J. Numer. Anal. 27(2) (1990), 277–291. (1990) MR1043607DOI10.1137/0727019
- Finite element methods: superconvergence, post-processing and a posteriori estimates, Proc. Conf. Univ. of Jyväskylä, 1996, Lecture Notes in Pure and Applied Mathematics volume 196, Marcel Dekker, New York, 1998. (1998) MR1602809
- 10.1137/0912031, SIAM J. Sci. Stat. Comput. 12(3) (1991), 573–594. (1991) MR1093207DOI10.1137/0912031
- 10.1137/0913064, SIAM J. Sci. Stat. Comput. 13(5) (1992), 1097–1122. (1992) Zbl0762.65081MR1177800DOI10.1137/0913064
- 10.1016/0377-0427(93)90093-Q, J. Comp. Appl. Math. 47 (1993), 101–121. (1993) Zbl0784.65091MR1226366DOI10.1016/0377-0427(93)90093-Q
- 10.1137/S0036142995280808, SIAM J. Numer. Anal. 35(2) (1998), 712–727. (1998) Zbl1096.76516MR1618886DOI10.1137/S0036142995280808
- A mixed finite element method for second order elliptic problems, Lecture Notes in Mathematics 606, 1977, pp. 292–315. (1977) MR0483555
- Mathematical Theory of Finite and Boundary Element Methods, Birkhäuser Verlag, Basel, 1990. (1990) MR1116555
- Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics 1054, Springer Verlag, New York, 1998. (1998) MR0744045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.