A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.
S. Adjerid; J.E. Flaherty; Y.J. Wang
Numerische Mathematik (1993)
- Volume: 65, Issue: 1, page 1-22
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topAdjerid, S., Flaherty, J.E., and Wang, Y.J.. "A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.." Numerische Mathematik 65.1 (1993): 1-22. <http://eudml.org/doc/133720>.
@article{Adjerid1993,
author = {Adjerid, S., Flaherty, J.E., Wang, Y.J.},
journal = {Numerische Mathematik},
keywords = {a posteriori error estimation; linear initial-boundary value problems; method of lines; local parabolic; finite element},
number = {1},
pages = {1-22},
title = {A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.},
url = {http://eudml.org/doc/133720},
volume = {65},
year = {1993},
}
TY - JOUR
AU - Adjerid, S.
AU - Flaherty, J.E.
AU - Wang, Y.J.
TI - A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.
JO - Numerische Mathematik
PY - 1993
VL - 65
IS - 1
SP - 1
EP - 22
KW - a posteriori error estimation; linear initial-boundary value problems; method of lines; local parabolic; finite element
UR - http://eudml.org/doc/133720
ER -
Citations in EuDML Documents
top- Tomáš Vejchodský, Fully discrete error estimation by the method of lines for a nonlinear parabolic problem
- Karel Segeth, A posteriori error estimates for parabolic differential systems solved by the finite element method of lines
- Jan Brandts, A posteriori error estimation and adaptivity in the method of lines with mixed finite elements
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.