Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations

Shu Hua Zhang; Tao Lin; Yan Ping Lin; Ming Rao

Applications of Mathematics (2000)

  • Volume: 45, Issue: 4, page 241-263
  • ISSN: 0862-7940

Abstract

top
We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be used to forma posteriori error estimators for accessing actual errors of the Petrov-Galerkin finite element solutions. Numerical examples are also provided to illustrate the theoretical results obtained in this paper.

How to cite

top

Zhang, Shu Hua, et al. "Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations." Applications of Mathematics 45.4 (2000): 241-263. <http://eudml.org/doc/33058>.

@article{Zhang2000,
abstract = {We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be used to forma posteriori error estimators for accessing actual errors of the Petrov-Galerkin finite element solutions. Numerical examples are also provided to illustrate the theoretical results obtained in this paper.},
author = {Zhang, Shu Hua, Lin, Tao, Lin, Yan Ping, Rao, Ming},
journal = {Applications of Mathematics},
keywords = {Volterra integro-differential equations; Petrov-Galerkin methods; asymptotic expansions; defect correction; a posteriori error estimators; Volterra integro-differential equations; Petrov-Galerkin methods; asymptotic expansions; defect correction; a posteriori error estimators},
language = {eng},
number = {4},
pages = {241-263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations},
url = {http://eudml.org/doc/33058},
volume = {45},
year = {2000},
}

TY - JOUR
AU - Zhang, Shu Hua
AU - Lin, Tao
AU - Lin, Yan Ping
AU - Rao, Ming
TI - Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations
JO - Applications of Mathematics
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 4
SP - 241
EP - 263
AB - We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be used to forma posteriori error estimators for accessing actual errors of the Petrov-Galerkin finite element solutions. Numerical examples are also provided to illustrate the theoretical results obtained in this paper.
LA - eng
KW - Volterra integro-differential equations; Petrov-Galerkin methods; asymptotic expansions; defect correction; a posteriori error estimators; Volterra integro-differential equations; Petrov-Galerkin methods; asymptotic expansions; defect correction; a posteriori error estimators
UR - http://eudml.org/doc/33058
ER -

References

top
  1. A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations, J. Comput. Appl. Math. 8 (1982), 213–229. (1982) Zbl0485.65087MR0682889
  2. 10.1137/0720080, SIAM J. Numer. Anal. 20 (1983), 1106–1119. (1983) Zbl0533.65087MR0723827DOI10.1137/0720080
  3. Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations, Math. Comp. 42, 165 (1984), 95–109. (1984) Zbl0543.65092MR0725986
  4. 10.1093/imanum/6.2.221, IMA J. Numer. Anal. 6 (1986), 221–239. (1986) Zbl0634.65142MR0967664DOI10.1093/imanum/6.2.221
  5. The numerical treatment of Volterra integro-differential equations with unbounded delay, J. Comput. Appl. Math. 28 (1989), 5–23. (1989) Zbl0687.65131MR1038829
  6. The Numerical Solution of Volterra Equations, CWI Monographs, Vol. 3, North-Holland, Amsterdam, 1986. (1986) MR0871871
  7. 10.1216/jiea/1181075847, J. Integral Equations Appl. 7 (1995), 1–16. (1995) MR1339686DOI10.1216/jiea/1181075847
  8. 10.1216/jiea/1181074245, J. Integral Equations Appl. 10 (1998), 375–396. (1998) MR1669667DOI10.1216/jiea/1181074245
  9. 10.1016/S0168-9274(96)00075-X, Appl. Numer. Math. 23 (1997), 381–402. (1997) MR1453423DOI10.1016/S0168-9274(96)00075-X
  10. 10.1137/0727036, SIAM J. Numer. Anal. 27 (1990), 595–607. (1990) MR1041253DOI10.1137/0727036
  11. 10.1137/0733012, SIAM J. Numer. Anal. 33 (1996), 208–220. (1996) MR1377251DOI10.1137/0733012
  12. 10.1216/jiea/1181075666, J. Integral Equations Appl. 4 (1992), 69–81. (1992) Zbl0763.65101MR1160088DOI10.1216/jiea/1181075666
  13. Finite Element Approximation of Variational Problems and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Essex, 1990. (1990) MR1066462
  14. Bibliography on Superconvergence, In: Finite Element Methods: Superconvergence, Post-Processing, and A Posteriori Estimates (edited by M. Křížek, P. Neittaanmäki and R. Stenberg), Lecture Notes in Pure and Applied Mathematics, vol. 196. Marcel Dekker, New York, 1998, pp. 315–348. (1998) MR1602809
  15. The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers, 1996. (1996) 
  16. 10.1023/A:1022264125558, Appl. Math. 42 (1997), 1–21. (1997) MR1426677DOI10.1023/A:1022264125558
  17. Methods for improving approximate accuracy for hyperbolic integro-differential equations, Systems Sci. Math. Sci. 10 (1997), 282–288. (1997) MR1469188
  18. 10.1023/A:1018925103993, Adv. in Comput. Math. 9 (1998), 117–128. (1998) MR1662762DOI10.1023/A:1018925103993
  19. Petrov-Galerkin methods for nonlinear Volterra integro-differential equations, Submitted to J. Math. Anal. Appl. 
  20. 10.1016/0022-247X(78)90234-2, J. Math. Anal. Appl. 66 (1978), 313–332. (1978) MR0515894DOI10.1016/0022-247X(78)90234-2
  21. Evolutionary Integral Equations and Applications, Birkhauser Verlag, Basel, 1993. (1993) MR1238939
  22. 10.1007/BF01385515, Numer. Math. 61 (1992), 373–382. (1992) Zbl0741.65110MR1151776DOI10.1007/BF01385515
  23. 10.1093/imanum/13.1.93, IMA J. Numer. Anal. 13 (1993), 93–99. (1993) Zbl0765.65126MR1199031DOI10.1093/imanum/13.1.93

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.