Second-order optimality conditions for nondominated solutions of multiobjective programming with data
Liping Liu; Pekka Neittaanmäki; Michal Křížek
Applications of Mathematics (2000)
- Volume: 45, Issue: 5, page 381-397
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Liping, Neittaanmäki, Pekka, and Křížek, Michal. "Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data." Applications of Mathematics 45.5 (2000): 381-397. <http://eudml.org/doc/33066>.
@article{Liu2000,
abstract = {We examine new second-order necessary conditions and sufficient conditions which characterize nondominated solutions of a generalized constrained multiobjective programming problem. The vector-valued criterion function as well as constraint functions are supposed to be from the class $C^\{1,1\}$. Second-order optimality conditions for local Pareto solutions are derived as a special case.},
author = {Liu, Liping, Neittaanmäki, Pekka, Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {multiobjective programming; nonsmooth constrained optimization; second-order optimality conditions; nondominated solutions; local Pareto optimal solutions; multiobjective programming; nonsmooth constrained optimization; second-order optimality conditions; nondominated solutions; local Pareto optimal solutions},
language = {eng},
number = {5},
pages = {381-397},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^\{1,1\}$ data},
url = {http://eudml.org/doc/33066},
volume = {45},
year = {2000},
}
TY - JOUR
AU - Liu, Liping
AU - Neittaanmäki, Pekka
AU - Křížek, Michal
TI - Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data
JO - Applications of Mathematics
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 5
SP - 381
EP - 397
AB - We examine new second-order necessary conditions and sufficient conditions which characterize nondominated solutions of a generalized constrained multiobjective programming problem. The vector-valued criterion function as well as constraint functions are supposed to be from the class $C^{1,1}$. Second-order optimality conditions for local Pareto solutions are derived as a special case.
LA - eng
KW - multiobjective programming; nonsmooth constrained optimization; second-order optimality conditions; nondominated solutions; local Pareto optimal solutions; multiobjective programming; nonsmooth constrained optimization; second-order optimality conditions; nondominated solutions; local Pareto optimal solutions
UR - http://eudml.org/doc/33066
ER -
References
top- Foundations of Optimization, LN in Econom. and Math. Systems, vol. 122, Springer-Verlag, Berlin-Heidelberg-New York, 1976. (1976) MR0429122
- 10.1007/BF00934107, J. Optim. Theory Appl. 31 (1980), 143–165. (1980) MR0600379DOI10.1007/BF00934107
- A New Approach to Second Order Optimality Conditions in Vector Optimization, Advances in Multiple Objective and Goal Programming, LN in Econom. and Math. Systems, vol. 455, Springer, Berlin, 1997. MR1487397
- 10.1007/BF01442169, Appl. Math. Optim. 11 (1984), 43–56. (1984) MR0726975DOI10.1007/BF01442169
- Second-order conditions for nondominated solution in generalized multiobjective mathematical programming, J. Systems Sci. Math. Sci. 5 (1985), 172–184. (Chinese) (1985) MR0847811
- 10.1080/02331938808843333, Optimization 19 (1988), 169–179. (1988) MR0948388DOI10.1080/02331938808843333
- Finite Element Approximation of Variational Problems and Applications, Longman, Harlow, 1990. (1990) MR1066462
- The second-order conditions of nondominated solutions for generalized multiobjective mathematical programming, J. Systems Sci. Math. Sci. 4 (1991), 128–138. (1991) MR1119288
- The second order conditions for nonlinear mathematical programming, pp. 153–158. MR1703473
- 10.1023/A:1023068513188, Appl. Math. 42 (1997), 311–320. (1997) MR1453935DOI10.1023/A:1023068513188
- 10.1137/0805032, SIAM J. Optim. 5 (1995), 659–669. (1995) MR1344674DOI10.1137/0805032
- First and second order optimality conditions in vector optimization, Ann. Sci. Math. Québec 14 (1990), 65–79. (1990) MR1070607
- 10.1137/0115056, SIAM. J. Appl. Math. 15 (1967), 641–652. (1967) Zbl0166.15601MR0216866DOI10.1137/0115056
- Nonlinear Multiobjective Optimization, Kluwer, Dordrecht, 1998. (1998) MR1784937
- Theory of the Integral, Hafner Publishing Co., New York, 1937. (1937)
- 10.1080/01630569108816425, Numer. Funct. Anal. Optim. 12 (1991), 237–252. (1991) MR1125051DOI10.1080/01630569108816425
- 10.1007/BF02207780, J. Optim. Theory Appl. 80 (1994), 551–571. (1994) Zbl0797.90101MR1265176DOI10.1007/BF02207780
- 10.1006/jmaa.1995.1247, J. Math. Anal. Appl. 193 (1995), 465–482. (1995) MR1338716DOI10.1006/jmaa.1995.1247
- 10.1016/0362-546X(94)90218-6, Nonlinear Anal. 23 (1994), 767–784. (1994) Zbl0816.49008MR1298568DOI10.1016/0362-546X(94)90218-6
- 10.1080/02331939208843851, Optimization 26 (1992), 165–185. (1992) MR1236606DOI10.1080/02331939208843851
- 10.1023/A:1022695714596, J. Optim. Theory Appl. 95 (1997), 209–224. (1997) MR1477357DOI10.1023/A:1022695714596
- Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjective, J. Optim. Theory Appl. 17 (1974), 320–377. (1974) MR0381739
- Multiple-Criteria Decision Making: Concepts, Techniques and Extensions, Plenum Press, New York, 1985. (1985) MR0812059
Citations in EuDML Documents
top- Ivan Ginchev, Angelo Guerraggio, Matteo Rocca, From scalar to vector optimization
- Ivan Ginchev, Angelo Guerraggio, Matteo Rocca, Locally Lipschitz vector optimization with inequality and equality constraints
- Dušan Bednařík, Karel Pastor, Decrease of property in vector optimization
- Karel Pastor, Derivatives of Hadamard type in scalar constrained optimization
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.