Fully discrete error estimation by the method of lines for a nonlinear parabolic problem

Tomáš Vejchodský

Applications of Mathematics (2003)

  • Volume: 48, Issue: 2, page 129-151
  • ISSN: 0862-7940

Abstract

top
A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.

How to cite

top

Vejchodský, Tomáš. "Fully discrete error estimation by the method of lines for a nonlinear parabolic problem." Applications of Mathematics 48.2 (2003): 129-151. <http://eudml.org/doc/33140>.

@article{Vejchodský2003,
abstract = {A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.},
author = {Vejchodský, Tomáš},
journal = {Applications of Mathematics},
keywords = {a posteriori error estimates; finite elements; nonlinear parabolic problems; effectivity index; singly implicit Runge-Kutta methods (SIRK); a posteriori error estimates; finite elements},
language = {eng},
number = {2},
pages = {129-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fully discrete error estimation by the method of lines for a nonlinear parabolic problem},
url = {http://eudml.org/doc/33140},
volume = {48},
year = {2003},
}

TY - JOUR
AU - Vejchodský, Tomáš
TI - Fully discrete error estimation by the method of lines for a nonlinear parabolic problem
JO - Applications of Mathematics
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 2
SP - 129
EP - 151
AB - A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.
LA - eng
KW - a posteriori error estimates; finite elements; nonlinear parabolic problems; effectivity index; singly implicit Runge-Kutta methods (SIRK); a posteriori error estimates; finite elements
UR - http://eudml.org/doc/33140
ER -

References

top
  1. 10.1007/BF01385737, Numer. Math. 65 (1993), 1–21. (1993) MR1217436DOI10.1007/BF01385737
  2. 10.1145/322154.322163, J. Assoc. Comput. Mach. 26 (1979), 731–738. (1979) Zbl0439.65057MR0545546DOI10.1145/322154.322163
  3. 10.1007/BF01947741, BIT 18 (1978), 22–41. (1978) Zbl0384.65034MR0483458DOI10.1007/BF01947741
  4. The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
  5. Nonlinear Differential Equations, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. (1980) MR0558764
  6. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. (1974) MR0636412
  7. 10.1006/jmaa.1994.1192, J. Math. Anal. Appl. 184 (1994), 168–189. (1994) MR1275952DOI10.1006/jmaa.1994.1192
  8. 10.1002/mma.1670110108, Math. Methods Appl. Sci. 11 (1989), 105–124. (1989) MR0973559DOI10.1002/mma.1670110108
  9. 10.1137/0731008, SIAM J. Numer. Anal. 31 (1994), 149–169. (1994) Zbl0798.65089MR1259970DOI10.1137/0731008
  10. High-order adaptive solution of parabolic equations  I. Singly implicit Runge-Kutta methods and error estimation, Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991. (1991) 
  11. 10.1007/BF01989753, BIT 33 (1993), 309–331. (1993) MR1326022DOI10.1007/BF01989753
  12. Nonlinear differential equations and inequalities, Mathematical Institute of Charles University, Prague, in preparation. 
  13. 10.1007/s002110050459, Numer. Math. 33 (1999), 455–475. (1999) Zbl0936.65113MR1715561DOI10.1007/s002110050459
  14. Finite Element Analysis, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. (1991) MR1164869
  15. Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997. (1997) MR1479170

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.