Fully discrete error estimation by the method of lines for a nonlinear parabolic problem
Applications of Mathematics (2003)
- Volume: 48, Issue: 2, page 129-151
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVejchodský, Tomáš. "Fully discrete error estimation by the method of lines for a nonlinear parabolic problem." Applications of Mathematics 48.2 (2003): 129-151. <http://eudml.org/doc/33140>.
@article{Vejchodský2003,
abstract = {A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.},
author = {Vejchodský, Tomáš},
journal = {Applications of Mathematics},
keywords = {a posteriori error estimates; finite elements; nonlinear parabolic problems; effectivity index; singly implicit Runge-Kutta methods (SIRK); a posteriori error estimates; finite elements},
language = {eng},
number = {2},
pages = {129-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fully discrete error estimation by the method of lines for a nonlinear parabolic problem},
url = {http://eudml.org/doc/33140},
volume = {48},
year = {2003},
}
TY - JOUR
AU - Vejchodský, Tomáš
TI - Fully discrete error estimation by the method of lines for a nonlinear parabolic problem
JO - Applications of Mathematics
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 2
SP - 129
EP - 151
AB - A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.
LA - eng
KW - a posteriori error estimates; finite elements; nonlinear parabolic problems; effectivity index; singly implicit Runge-Kutta methods (SIRK); a posteriori error estimates; finite elements
UR - http://eudml.org/doc/33140
ER -
References
top- 10.1007/BF01385737, Numer. Math. 65 (1993), 1–21. (1993) MR1217436DOI10.1007/BF01385737
- 10.1145/322154.322163, J. Assoc. Comput. Mach. 26 (1979), 731–738. (1979) Zbl0439.65057MR0545546DOI10.1145/322154.322163
- 10.1007/BF01947741, BIT 18 (1978), 22–41. (1978) Zbl0384.65034MR0483458DOI10.1007/BF01947741
- The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
- Nonlinear Differential Equations, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. (1980) MR0558764
- Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. (1974) MR0636412
- 10.1006/jmaa.1994.1192, J. Math. Anal. Appl. 184 (1994), 168–189. (1994) MR1275952DOI10.1006/jmaa.1994.1192
- 10.1002/mma.1670110108, Math. Methods Appl. Sci. 11 (1989), 105–124. (1989) MR0973559DOI10.1002/mma.1670110108
- 10.1137/0731008, SIAM J. Numer. Anal. 31 (1994), 149–169. (1994) Zbl0798.65089MR1259970DOI10.1137/0731008
- High-order adaptive solution of parabolic equations I. Singly implicit Runge-Kutta methods and error estimation, Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991. (1991)
- 10.1007/BF01989753, BIT 33 (1993), 309–331. (1993) MR1326022DOI10.1007/BF01989753
- Nonlinear differential equations and inequalities, Mathematical Institute of Charles University, Prague, in preparation.
- 10.1007/s002110050459, Numer. Math. 33 (1999), 455–475. (1999) Zbl0936.65113MR1715561DOI10.1007/s002110050459
- Finite Element Analysis, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. (1991) MR1164869
- Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997. (1997) MR1479170
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.