Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media
Shanghui Jia; Deli Li; Tang Liu; Shu Hua Zhang
Applications of Mathematics (2008)
- Volume: 53, Issue: 1, page 13-39
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJia, Shanghui, et al. "Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media." Applications of Mathematics 53.1 (2008): 13-39. <http://eudml.org/doc/33309>.
@article{Jia2008,
abstract = {Asymptotic error expansions in the sense of $L^\{\infty \}$-norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing technique, and the key point in deriving them is the establishment of the error estimates for the mixed regularized Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal. Model 2 (2005), 301–328. As a result of all these higher order numerical approximations, they can be used to generate a posteriori error estimators for this mixed finite element approximation.},
author = {Jia, Shanghui, Li, Deli, Liu, Tang, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {integro-differential equations; mixed finite element methods; mixed regularized Green’s functions; asymptotic expansions; interpolation defect correction; interpolation postprocessing; a posteriori error estimators; integro-differential equations; mixed finite element methods; mixed regularized Green's functions},
language = {eng},
number = {1},
pages = {13-39},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media},
url = {http://eudml.org/doc/33309},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Jia, Shanghui
AU - Li, Deli
AU - Liu, Tang
AU - Zhang, Shu Hua
TI - Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 13
EP - 39
AB - Asymptotic error expansions in the sense of $L^{\infty }$-norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing technique, and the key point in deriving them is the establishment of the error estimates for the mixed regularized Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal. Model 2 (2005), 301–328. As a result of all these higher order numerical approximations, they can be used to generate a posteriori error estimators for this mixed finite element approximation.
LA - eng
KW - integro-differential equations; mixed finite element methods; mixed regularized Green’s functions; asymptotic expansions; interpolation defect correction; interpolation postprocessing; a posteriori error estimators; integro-differential equations; mixed finite element methods; mixed regularized Green's functions
UR - http://eudml.org/doc/33309
ER -
References
top- 10.1007/BF01436561, Numer. Math. 20 (1973), 179–192. (1973) MR0359352DOI10.1007/BF01436561
- Asymptotic Error Expansion and Defect in the Finite Element Method, University of Heidelberg, Institut für Angewandte Mathematik, Heidelberg, .
- 10.1007/BF01389427, Numer. Math. 49 (1986), 11–38. (1986) MR0847015DOI10.1007/BF01389427
- On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, Anal. Numér. 2 (1974), 129–151. (1974) Zbl0338.90047MR0365287
- 10.1216/jiea/1181074245, J. Integral Equations Appl. 10 (1998), 375–396. (1998) MR1669667DOI10.1216/jiea/1181074245
- 10.1007/BF02575943, Calcolo 25 (1988), 187–201. (1988) MR1053754DOI10.1007/BF02575943
- 10.1137/0727036, SIAM J. Numer. Anal. 27 (1990), 595–607. (1990) MR1041253DOI10.1137/0727036
- Higher Accuracy Theory of FEM, Hunan Science Press, Changsha, 1995. (1995)
- 10.1090/S0025-5718-1985-0771029-9, Math. Comput. 44 (1985), 39–52. (1985) MR0771029DOI10.1090/S0025-5718-1985-0771029-9
- 10.1137/S0036142900378406, SIAM J. Numer. Anal. 40 (2002), 1538–1560. (2002) MR1951906DOI10.1137/S0036142900378406
- A numerical approximation of nonFickian flows with mixing length growth in porous media, Acta Math. Univ. Comenian. (N. S.) 70 (2001), 75–84. (2001) MR1865361
- A backward Euler method for mixed finite element approximations of nonFickian flows with non-smooth data in porous media, Preprint.
- -error estimates and superconvergence in maximum norm of mixed finite element methods for nonFickian flows in porous media, Int. J. Numer. Anal. Model. 2 (2005), 301–328. (2005) MR2112650
- 10.1137/040614293, SIAM J. Numer. Anal. 44 (2006), 1122–1149. (2006) MR2231858DOI10.1137/040614293
- Asymptotic expansion for the finite element approximations of parabolic problems, Bonn. Math. Schr. 158 (1984), 11–30. (1984) MR0793413
- Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods, Adv. Comput. Math (to appear). (to appear) MR2447252
- 10.1137/0726075, SIAM J. Numer. Anal. 26 (1989), 1291–1309. (1989) DOI10.1137/0726075
- 10.1137/0727090, SIAM J. Numer. Anal. 27 (1990), 1535–1541. (1990) MR1080337DOI10.1137/0727090
- The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers, , 1996. (1996)
- 10.1023/A:1022264125558, Appl. Math. 42 (1997), 1–21. (1997) MR1426677DOI10.1023/A:1022264125558
- Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations, J. Comput. Math. 16 (1998), 57–62. (1998) MR1606093
- 10.1007/BF02677428, Acta Math. Appl. Sin. 14 (1998), 202–211. (1998) MR1620823DOI10.1007/BF02677428
- Methods for improving approximate accuracy for hyperbolic integro-differential equations, Syst. Sci. Math. Sci. 10 (1997), 282–288. (1997) MR1469188
- Extrapolation and defect correction for diffusion equations with boundary integral conditions, Acta Math. Sci. 17 (1997), 409–412. (1997) MR1613231
- 10.1023/A:1018925103993, Adv. Comput. Math. 9 (1998), 117–128. (1998) MR1662762DOI10.1023/A:1018925103993
- 10.1137/S0036142999336145, SIAM J. Numer. Anal. 38 (2000), 937–963. (2000) MR1781210DOI10.1137/S0036142999336145
- On maximum norm estimates for Ritz-Volterra projections and applications to some time-dependent problems, J. Comput. Math. 15 (1997), 159–178. (1997) MR1448820
- 10.1137/0728056, SIAM J. Numer. Anal. 28 (1991), 1047–1070. (1991) MR1111453DOI10.1137/0728056
- Difference Methods and Their Extrapolation, Springer, New York, 1983. (1983) MR0705477
- 10.1016/0022-247X(85)90266-5, J. Math. Anal. Appl. 112 (1985), 607–618. (1985) MR0813623DOI10.1016/0022-247X(85)90266-5
- 10.1216/jiea/1181075713, J. Integral Equations Appl. 4 (1992), 533–584. (1992) MR1200801DOI10.1216/jiea/1181075713
- 10.1137/0723073, SIAM J. Numer. Anal. 23 (1986), 1052–1061. (1986) MR0859017DOI10.1137/0723073
- 10.2307/2008352, Math. Comput. 53 (1989), 121–139. (1989) MR0969493DOI10.2307/2008352
- 10.1090/S0025-5718-1991-1068807-0, Math. Comput. 56 (1991), 477–503. (1991) Zbl0729.65084MR1068807DOI10.1090/S0025-5718-1991-1068807-0
- 10.1007/BF01396046, Numer. Math. 55 (1989), 401–430. (1989) MR0997230DOI10.1007/BF01396046
- An extrapolation method for BEM, J. Comput. Math. 2 (1989), 217–224. (1989) Zbl0673.65072MR1016842
- Extrapolation and a-posteriori error estimators of Petrov-Galerkin methods for non-linear Volterra integro-differential equations, J. Comp. Math. 19 (2001), 407–422. (2001) MR1842853
- A multi-parameter splitting extrapolation and a parallel algorithm, Syst. Sci. Math. Sci. 10 (1997), 253–260. (1997) MR1469184
- Superconvergence Theory of the Finite Element Methods, Hunan Science Press, , 1989. (1989)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.