Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media

Shanghui Jia; Deli Li; Tang Liu; Shu Hua Zhang

Applications of Mathematics (2008)

  • Volume: 53, Issue: 1, page 13-39
  • ISSN: 0862-7940

Abstract

top
Asymptotic error expansions in the sense of L -norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing technique, and the key point in deriving them is the establishment of the error estimates for the mixed regularized Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal. Model 2 (2005), 301–328. As a result of all these higher order numerical approximations, they can be used to generate a posteriori error estimators for this mixed finite element approximation.

How to cite

top

Jia, Shanghui, et al. "Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media." Applications of Mathematics 53.1 (2008): 13-39. <http://eudml.org/doc/33309>.

@article{Jia2008,
abstract = {Asymptotic error expansions in the sense of $L^\{\infty \}$-norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing technique, and the key point in deriving them is the establishment of the error estimates for the mixed regularized Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal. Model 2 (2005), 301–328. As a result of all these higher order numerical approximations, they can be used to generate a posteriori error estimators for this mixed finite element approximation.},
author = {Jia, Shanghui, Li, Deli, Liu, Tang, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {integro-differential equations; mixed finite element methods; mixed regularized Green’s functions; asymptotic expansions; interpolation defect correction; interpolation postprocessing; a posteriori error estimators; integro-differential equations; mixed finite element methods; mixed regularized Green's functions},
language = {eng},
number = {1},
pages = {13-39},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media},
url = {http://eudml.org/doc/33309},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Jia, Shanghui
AU - Li, Deli
AU - Liu, Tang
AU - Zhang, Shu Hua
TI - Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 13
EP - 39
AB - Asymptotic error expansions in the sense of $L^{\infty }$-norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing technique, and the key point in deriving them is the establishment of the error estimates for the mixed regularized Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal. Model 2 (2005), 301–328. As a result of all these higher order numerical approximations, they can be used to generate a posteriori error estimators for this mixed finite element approximation.
LA - eng
KW - integro-differential equations; mixed finite element methods; mixed regularized Green’s functions; asymptotic expansions; interpolation defect correction; interpolation postprocessing; a posteriori error estimators; integro-differential equations; mixed finite element methods; mixed regularized Green's functions
UR - http://eudml.org/doc/33309
ER -

References

top
  1. 10.1007/BF01436561, Numer. Math. 20 (1973), 179–192. (1973) MR0359352DOI10.1007/BF01436561
  2. Asymptotic Error Expansion and Defect in the Finite Element Method, University of Heidelberg, Institut für Angewandte Mathematik, Heidelberg, . 
  3. 10.1007/BF01389427, Numer. Math. 49 (1986), 11–38. (1986) MR0847015DOI10.1007/BF01389427
  4. On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, Anal. Numér. 2 (1974), 129–151. (1974) Zbl0338.90047MR0365287
  5. 10.1216/jiea/1181074245, J.  Integral Equations Appl. 10 (1998), 375–396. (1998) MR1669667DOI10.1216/jiea/1181074245
  6. 10.1007/BF02575943, Calcolo 25 (1988), 187–201. (1988) MR1053754DOI10.1007/BF02575943
  7. 10.1137/0727036, SIAM J.  Numer. Anal. 27 (1990), 595–607. (1990) MR1041253DOI10.1137/0727036
  8. Higher Accuracy Theory of FEM, Hunan Science Press, Changsha, 1995. (1995) 
  9. 10.1090/S0025-5718-1985-0771029-9, Math. Comput. 44 (1985), 39–52. (1985) MR0771029DOI10.1090/S0025-5718-1985-0771029-9
  10. 10.1137/S0036142900378406, SIAM J.  Numer. Anal. 40 (2002), 1538–1560. (2002) MR1951906DOI10.1137/S0036142900378406
  11. A numerical approximation of nonFickian flows with mixing length growth in porous media, Acta Math. Univ. Comenian. (N.  S.) 70 (2001), 75–84. (2001) MR1865361
  12. A backward Euler method for mixed finite element approximations of nonFickian flows with non-smooth data in porous media, Preprint. 
  13. L -error estimates and superconvergence in maximum norm of mixed finite element methods for nonFickian flows in porous media, Int. J.  Numer. Anal. Model. 2 (2005), 301–328. (2005) MR2112650
  14. 10.1137/040614293, SIAM J. Numer. Anal. 44 (2006), 1122–1149. (2006) MR2231858DOI10.1137/040614293
  15. Asymptotic expansion for the finite element approximations of parabolic problems, Bonn. Math. Schr. 158 (1984), 11–30. (1984) MR0793413
  16. Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods, Adv. Comput. Math (to appear). (to appear) MR2447252
  17. 10.1137/0726075, SIAM J. Numer. Anal. 26 (1989), 1291–1309. (1989) DOI10.1137/0726075
  18. 10.1137/0727090, SIAM J.  Numer. Anal. 27 (1990), 1535–1541. (1990) MR1080337DOI10.1137/0727090
  19. The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers, , 1996. (1996) 
  20. 10.1023/A:1022264125558, Appl. Math. 42 (1997), 1–21. (1997) MR1426677DOI10.1023/A:1022264125558
  21. Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations, J.  Comput. Math. 16 (1998), 57–62. (1998) MR1606093
  22. 10.1007/BF02677428, Acta Math. Appl. Sin. 14 (1998), 202–211. (1998) MR1620823DOI10.1007/BF02677428
  23. Methods for improving approximate accuracy for hyperbolic integro-differential equations, Syst. Sci. Math. Sci. 10 (1997), 282–288. (1997) MR1469188
  24. Extrapolation and defect correction for diffusion equations with boundary integral conditions, Acta Math. Sci. 17 (1997), 409–412. (1997) MR1613231
  25. 10.1023/A:1018925103993, Adv. Comput. Math. 9 (1998), 117–128. (1998) MR1662762DOI10.1023/A:1018925103993
  26. 10.1137/S0036142999336145, SIAM J.  Numer. Anal. 38 (2000), 937–963. (2000) MR1781210DOI10.1137/S0036142999336145
  27. On maximum norm estimates for Ritz-Volterra projections and applications to some time-dependent problems, J.  Comput. Math. 15 (1997), 159–178. (1997) MR1448820
  28. 10.1137/0728056, SIAM J.  Numer. Anal. 28 (1991), 1047–1070. (1991) MR1111453DOI10.1137/0728056
  29. Difference Methods and Their Extrapolation, Springer, New York, 1983. (1983) MR0705477
  30. 10.1016/0022-247X(85)90266-5, J.  Math. Anal. Appl. 112 (1985), 607–618. (1985) MR0813623DOI10.1016/0022-247X(85)90266-5
  31. 10.1216/jiea/1181075713, J.  Integral Equations Appl. 4 (1992), 533–584. (1992) MR1200801DOI10.1216/jiea/1181075713
  32. 10.1137/0723073, SIAM J.  Numer. Anal. 23 (1986), 1052–1061. (1986) MR0859017DOI10.1137/0723073
  33. 10.2307/2008352, Math. Comput. 53 (1989), 121–139. (1989) MR0969493DOI10.2307/2008352
  34. 10.1090/S0025-5718-1991-1068807-0, Math. Comput. 56 (1991), 477–503. (1991) Zbl0729.65084MR1068807DOI10.1090/S0025-5718-1991-1068807-0
  35. 10.1007/BF01396046, Numer. Math. 55 (1989), 401–430. (1989) MR0997230DOI10.1007/BF01396046
  36. An extrapolation method for BEM, J.  Comput. Math. 2 (1989), 217–224. (1989) Zbl0673.65072MR1016842
  37. Extrapolation and a-posteriori error estimators of Petrov-Galerkin methods for non-linear Volterra integro-differential equations, J.  Comp. Math. 19 (2001), 407–422. (2001) MR1842853
  38. A multi-parameter splitting extrapolation and a parallel algorithm, Syst. Sci. Math. Sci. 10 (1997), 253–260. (1997) MR1469184
  39. Superconvergence Theory of the Finite Element Methods, Hunan Science Press, , 1989. (1989) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.