Multiscale stochastic homogenization of convection-diffusion equations

Nils Svanstedt

Applications of Mathematics (2008)

  • Volume: 53, Issue: 2, page 143-155
  • ISSN: 0862-7940

Abstract

top
Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form u ε ω / t + 1 / ϵ 3 𝒞 T 3 ( x / ε 3 ) ω 3 · u ε ω - div α T 1 ( x / ε 1 ) ω 1 , T 2 ( x / ε 2 ) ω 2 , t u ε ω = f . It is shown, under certain structure assumptions on the random vector field 𝒞 ( ω 3 ) and the random map α ( ω 1 , ω 2 , t ) , that the sequence { u ϵ ω } of solutions converges in the sense of G-convergence of parabolic operators to the solution u of the homogenized problem u / t - div ( ( t ) u ) = f .

How to cite

top

Svanstedt, Nils. "Multiscale stochastic homogenization of convection-diffusion equations." Applications of Mathematics 53.2 (2008): 143-155. <http://eudml.org/doc/33315>.

@article{Svanstedt2008,
abstract = {Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form $\{\partial u^\omega _\{\varepsilon \}\}/\{\partial t\} +\{1\}/\{\epsilon _3\}\,\mathcal \{C\}\bigl (T_3(\{x\}/\{\varepsilon _3\}) \omega _3\bigr )\cdot \nabla u^\omega _\{\varepsilon \}- \operatorname\{div\}\bigl ( \alpha \bigl (T_1(\{x\}/\{\varepsilon _1\})\omega _1, T_2(\{x\}/\{\varepsilon _2\})\omega _2 ,t\bigr ) \nabla u^\omega _\{\varepsilon \}\bigr )=f$. It is shown, under certain structure assumptions on the random vector field $\{\mathcal \{C\}\}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem $\{\partial u\}/\{\partial t\} - \operatorname\{div\}( \mathcal \{B\}(t)\nabla u ) = f$.},
author = {Svanstedt, Nils},
journal = {Applications of Mathematics},
keywords = {multiscale; stochastic; homogenization; convection-diffusion; multiscale; stochastic; homogenization; convection-diffusion},
language = {eng},
number = {2},
pages = {143-155},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiscale stochastic homogenization of convection-diffusion equations},
url = {http://eudml.org/doc/33315},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Svanstedt, Nils
TI - Multiscale stochastic homogenization of convection-diffusion equations
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 143
EP - 155
AB - Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form ${\partial u^\omega _{\varepsilon }}/{\partial t} +{1}/{\epsilon _3}\,\mathcal {C}\bigl (T_3({x}/{\varepsilon _3}) \omega _3\bigr )\cdot \nabla u^\omega _{\varepsilon }- \operatorname{div}\bigl ( \alpha \bigl (T_1({x}/{\varepsilon _1})\omega _1, T_2({x}/{\varepsilon _2})\omega _2 ,t\bigr ) \nabla u^\omega _{\varepsilon }\bigr )=f$. It is shown, under certain structure assumptions on the random vector field ${\mathcal {C}}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem ${\partial u}/{\partial t} - \operatorname{div}( \mathcal {B}(t)\nabla u ) = f$.
LA - eng
KW - multiscale; stochastic; homogenization; convection-diffusion; multiscale; stochastic; homogenization; convection-diffusion
UR - http://eudml.org/doc/33315
ER -

References

top
  1. Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam-New York-Oxford, 1978. (1978) MR0503330
  2. 10.1016/S0294-1449(16)30298-0, Ann. Inst. H.  Poincaré, Anal. Non Linéare 7 (1990), 123–160. (1990) MR1065871DOI10.1016/S0294-1449(16)30298-0
  3. 10.1016/0362-546X(90)90102-M, Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. (1990) MR1049117DOI10.1016/0362-546X(90)90102-M
  4. 10.1137/030600266, Multiscale Model. Simul. 2 (2004), 237–268. (2004) MR2043587DOI10.1137/030600266
  5. Partial Differential Equations. AMS Graduate Studies in Mathematics, Vol.  19, AMS, Providence, 1998. (1998) MR1625845
  6. 10.1137/S0036139992236785, SIAM J.  Appl. Math. 54 (1994), 333–408. (1994) MR1265233DOI10.1137/S0036139992236785
  7. 10.1142/S0252959901000024, Chin. Ann. Math., Ser.  B 22 (2001), 1–12. (2001) MR1823125DOI10.1142/S0252959901000024
  8. Convergence of parabolic equations, Boll. Unione Math. Ital. 14-B (1977), 547–568. (1977) Zbl0356.35042MR0460889
  9. G-convergence and homogenization of sequences of linear and monlinear partial differential operators, PhD. Thesis, Luleå University, 1992. (1992) 
  10. 10.1016/S0362-546X(97)00532-4, Nonlinear Anal., Theory Methods Appl. 36 (1999), 807–842. (1999) Zbl0933.35020MR1682689DOI10.1016/S0362-546X(97)00532-4
  11. 10.3934/nhm.2007.2.181, Netw. Heterog. Media 2 (2007), 181–192. (2007) MR2291817DOI10.3934/nhm.2007.2.181
  12. Nonlinear Functional Analysis and its Applications  2 B, Springer, Berlin-New York, 1985. (1985) MR0768749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.