Multiscale stochastic homogenization of convection-diffusion equations
Applications of Mathematics (2008)
- Volume: 53, Issue: 2, page 143-155
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSvanstedt, Nils. "Multiscale stochastic homogenization of convection-diffusion equations." Applications of Mathematics 53.2 (2008): 143-155. <http://eudml.org/doc/33315>.
@article{Svanstedt2008,
abstract = {Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form $\{\partial u^\omega _\{\varepsilon \}\}/\{\partial t\} +\{1\}/\{\epsilon _3\}\,\mathcal \{C\}\bigl (T_3(\{x\}/\{\varepsilon _3\}) \omega _3\bigr )\cdot \nabla u^\omega _\{\varepsilon \}- \operatorname\{div\}\bigl ( \alpha \bigl (T_1(\{x\}/\{\varepsilon _1\})\omega _1, T_2(\{x\}/\{\varepsilon _2\})\omega _2 ,t\bigr ) \nabla u^\omega _\{\varepsilon \}\bigr )=f$. It is shown, under certain structure assumptions on the random vector field $\{\mathcal \{C\}\}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem $\{\partial u\}/\{\partial t\} - \operatorname\{div\}( \mathcal \{B\}(t)\nabla u ) = f$.},
author = {Svanstedt, Nils},
journal = {Applications of Mathematics},
keywords = {multiscale; stochastic; homogenization; convection-diffusion; multiscale; stochastic; homogenization; convection-diffusion},
language = {eng},
number = {2},
pages = {143-155},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiscale stochastic homogenization of convection-diffusion equations},
url = {http://eudml.org/doc/33315},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Svanstedt, Nils
TI - Multiscale stochastic homogenization of convection-diffusion equations
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 143
EP - 155
AB - Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form ${\partial u^\omega _{\varepsilon }}/{\partial t} +{1}/{\epsilon _3}\,\mathcal {C}\bigl (T_3({x}/{\varepsilon _3}) \omega _3\bigr )\cdot \nabla u^\omega _{\varepsilon }- \operatorname{div}\bigl ( \alpha \bigl (T_1({x}/{\varepsilon _1})\omega _1, T_2({x}/{\varepsilon _2})\omega _2 ,t\bigr ) \nabla u^\omega _{\varepsilon }\bigr )=f$. It is shown, under certain structure assumptions on the random vector field ${\mathcal {C}}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem ${\partial u}/{\partial t} - \operatorname{div}( \mathcal {B}(t)\nabla u ) = f$.
LA - eng
KW - multiscale; stochastic; homogenization; convection-diffusion; multiscale; stochastic; homogenization; convection-diffusion
UR - http://eudml.org/doc/33315
ER -
References
top- Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam-New York-Oxford, 1978. (1978) MR0503330
- 10.1016/S0294-1449(16)30298-0, Ann. Inst. H. Poincaré, Anal. Non Linéare 7 (1990), 123–160. (1990) MR1065871DOI10.1016/S0294-1449(16)30298-0
- 10.1016/0362-546X(90)90102-M, Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. (1990) MR1049117DOI10.1016/0362-546X(90)90102-M
- 10.1137/030600266, Multiscale Model. Simul. 2 (2004), 237–268. (2004) MR2043587DOI10.1137/030600266
- Partial Differential Equations. AMS Graduate Studies in Mathematics, Vol. 19, AMS, Providence, 1998. (1998) MR1625845
- 10.1137/S0036139992236785, SIAM J. Appl. Math. 54 (1994), 333–408. (1994) MR1265233DOI10.1137/S0036139992236785
- 10.1142/S0252959901000024, Chin. Ann. Math., Ser. B 22 (2001), 1–12. (2001) MR1823125DOI10.1142/S0252959901000024
- Convergence of parabolic equations, Boll. Unione Math. Ital. 14-B (1977), 547–568. (1977) Zbl0356.35042MR0460889
- G-convergence and homogenization of sequences of linear and monlinear partial differential operators, PhD. Thesis, Luleå University, 1992. (1992)
- 10.1016/S0362-546X(97)00532-4, Nonlinear Anal., Theory Methods Appl. 36 (1999), 807–842. (1999) Zbl0933.35020MR1682689DOI10.1016/S0362-546X(97)00532-4
- 10.3934/nhm.2007.2.181, Netw. Heterog. Media 2 (2007), 181–192. (2007) MR2291817DOI10.3934/nhm.2007.2.181
- Nonlinear Functional Analysis and its Applications 2 B, Springer, Berlin-New York, 1985. (1985) MR0768749
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.