Stochastic homogenization of a class of monotone eigenvalue problems

Nils Svanstedt

Applications of Mathematics (2010)

  • Volume: 55, Issue: 5, page 385-404
  • ISSN: 0862-7940

Abstract

top
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form - div a T 1 x ε 1 ω 1 , T 2 x ε 2 ω 2 , u ε ω = λ ε ω 𝒞 ( u ε ω ) . It is shown, under certain structure assumptions on the random map a ( ω 1 , ω 2 , ξ ) , that the sequence { λ ε ω , k , u ε ω , k } of k th eigenpairs converges to the k th eigenpair { λ k , u k } of the homogenized eigenvalue problem - div ( b ( u ) ) = λ 𝒞 ¯ ( u ) . For the case of p -Laplacian type maps we characterize b explicitly.

How to cite

top

Svanstedt, Nils. "Stochastic homogenization of a class of monotone eigenvalue problems." Applications of Mathematics 55.5 (2010): 385-404. <http://eudml.org/doc/116469>.

@article{Svanstedt2010,
abstract = {Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form \[ -\operatorname\{div\}\Bigl (a\Bigl (T\_1\Bigl (\frac\{x\}\{\varepsilon \_1\}\Bigr )\omega \_1,T\_2 \Bigl (\frac\{x\}\{\varepsilon \_2\}\Bigr )\omega \_2, \nabla u^\omega \_\{\varepsilon \}\Bigr )\Bigr ) =\lambda \_\varepsilon ^\omega \mathcal \{C\}(u^\omega \_\{\varepsilon \}). \] It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\lbrace \lambda _\varepsilon ^\{\omega ,k\},u^\{\omega ,k\}_\varepsilon \rbrace $ of $k$th eigenpairs converges to the $k$th eigenpair $\lbrace \lambda ^k,u^k\rbrace $ of the homogenized eigenvalue problem \[ - \{\rm div\}( b(\nabla u) ) = \lambda \{\overline\{\mathcal \{C\}\}\}(u). \] For the case of $p$-Laplacian type maps we characterize $b$ explicitly.},
author = {Svanstedt, Nils},
journal = {Applications of Mathematics},
keywords = {stochastic; homogenization; eigenvalue; stochastic; homogenization; eigenvalue},
language = {eng},
number = {5},
pages = {385-404},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stochastic homogenization of a class of monotone eigenvalue problems},
url = {http://eudml.org/doc/116469},
volume = {55},
year = {2010},
}

TY - JOUR
AU - Svanstedt, Nils
TI - Stochastic homogenization of a class of monotone eigenvalue problems
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 5
SP - 385
EP - 404
AB - Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form \[ -\operatorname{div}\Bigl (a\Bigl (T_1\Bigl (\frac{x}{\varepsilon _1}\Bigr )\omega _1,T_2 \Bigl (\frac{x}{\varepsilon _2}\Bigr )\omega _2, \nabla u^\omega _{\varepsilon }\Bigr )\Bigr ) =\lambda _\varepsilon ^\omega \mathcal {C}(u^\omega _{\varepsilon }). \] It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\lbrace \lambda _\varepsilon ^{\omega ,k},u^{\omega ,k}_\varepsilon \rbrace $ of $k$th eigenpairs converges to the $k$th eigenpair $\lbrace \lambda ^k,u^k\rbrace $ of the homogenized eigenvalue problem \[ - {\rm div}( b(\nabla u) ) = \lambda {\overline{\mathcal {C}}}(u). \] For the case of $p$-Laplacian type maps we characterize $b$ explicitly.
LA - eng
KW - stochastic; homogenization; eigenvalue; stochastic; homogenization; eigenvalue
UR - http://eudml.org/doc/116469
ER -

References

top
  1. Azorero, J. P. García, Alonso, I. Peral, Existence and nonuniqueness for the p -Laplacian: Nonlinear eigenvalues, Commun. Partial Differ. Equations 12 (1987), 1389-1430. (1987) MR0912211
  2. Baffico, L., Conca, C., Rajesh, M., Homogenization of a class of nonlinear eigenvalue problems, Proc. R. Soc. Edinb. 136A (2006), 7-22. (2006) Zbl1105.35010MR2217505
  3. Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic Analysis for Periodic Structures, North-Holland Amsterdam (1978). (1978) Zbl0404.35001MR0503330
  4. Chiadò-Piat, V., Maso, G. Dal, Defranceschi, A., G-convergence of monotone operators, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123-160. (1990) MR1065871
  5. Chiadò-Piat, V., Defranceschi, A., 10.1016/0362-546X(90)90102-M, Nonlinear Anal., Theory Methods Appl. 14 (1990), 717-732. (1990) MR1049117DOI10.1016/0362-546X(90)90102-M
  6. Maso, G. Dal, An Introduction to Γ -convergence, Birkhäuser Boston (1992). (1992) MR1201152
  7. Defranceschi, A., 10.3233/ASY-1989-2103, Asymptotic Anal. 2 (1989), 21-37. (1989) Zbl0681.47023MR0991415DOI10.3233/ASY-1989-2103
  8. Champion, T., Pascale, L. de, Asymptotic behaviour of nonlinear eigenvalue problems involving p -Laplacian type operators, Proc. R. Soc. Edinb. 37A (2007), 1179-1195. (2007) Zbl1134.35013MR2376876
  9. Dunford, N., Schwartz, J. T., Linear Operators. Part 1: General Theory, John Wiley & Sons New York (1957). (1957) MR1009162
  10. Pankov, Y. Efendiev A., 10.1137/030600266, Multiscale Model. Simul. 2 (2004), 237-268. (2004) MR2043587DOI10.1137/030600266
  11. Lindqvist, P., On a nonlinear eigenvalue problem. Fall School in Analysis, Jyväskylä 1994, Finland, Report 68 Univ. Jyväskylä Jyväskylä (1995), 33-54. (1995) MR1351043
  12. Svanstedt, N., 10.1016/S0362-546X(97)00532-4, Nonlinear Anal., Theory Methods Appl. 36 (1999), 807-842. (1999) Zbl0933.35020MR1682689DOI10.1016/S0362-546X(97)00532-4
  13. Svanstedt, N., 10.3934/nhm.2007.2.181, Netw. Heterog. Media 2 (2007), 181-192. (2007) MR2291817DOI10.3934/nhm.2007.2.181
  14. Svanstedt, N., 10.1007/s10492-008-0017-x, Appl. Math. 53 (2008), 143-155. (2008) MR2399903DOI10.1007/s10492-008-0017-x
  15. Zhikov, V. V., Kozlov, S. M., Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals, Springer Berlin (1994). (1994) MR1329546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.