Stochastic homogenization of a class of monotone eigenvalue problems
Applications of Mathematics (2010)
- Volume: 55, Issue: 5, page 385-404
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSvanstedt, Nils. "Stochastic homogenization of a class of monotone eigenvalue problems." Applications of Mathematics 55.5 (2010): 385-404. <http://eudml.org/doc/116469>.
@article{Svanstedt2010,
abstract = {Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form \[ -\operatorname\{div\}\Bigl (a\Bigl (T\_1\Bigl (\frac\{x\}\{\varepsilon \_1\}\Bigr )\omega \_1,T\_2 \Bigl (\frac\{x\}\{\varepsilon \_2\}\Bigr )\omega \_2, \nabla u^\omega \_\{\varepsilon \}\Bigr )\Bigr ) =\lambda \_\varepsilon ^\omega \mathcal \{C\}(u^\omega \_\{\varepsilon \}). \]
It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\lbrace \lambda _\varepsilon ^\{\omega ,k\},u^\{\omega ,k\}_\varepsilon \rbrace $ of $k$th eigenpairs converges to the $k$th eigenpair $\lbrace \lambda ^k,u^k\rbrace $ of the homogenized eigenvalue problem \[ - \{\rm div\}( b(\nabla u) ) = \lambda \{\overline\{\mathcal \{C\}\}\}(u). \]
For the case of $p$-Laplacian type maps we characterize $b$ explicitly.},
author = {Svanstedt, Nils},
journal = {Applications of Mathematics},
keywords = {stochastic; homogenization; eigenvalue; stochastic; homogenization; eigenvalue},
language = {eng},
number = {5},
pages = {385-404},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stochastic homogenization of a class of monotone eigenvalue problems},
url = {http://eudml.org/doc/116469},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Svanstedt, Nils
TI - Stochastic homogenization of a class of monotone eigenvalue problems
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 5
SP - 385
EP - 404
AB - Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form \[ -\operatorname{div}\Bigl (a\Bigl (T_1\Bigl (\frac{x}{\varepsilon _1}\Bigr )\omega _1,T_2 \Bigl (\frac{x}{\varepsilon _2}\Bigr )\omega _2, \nabla u^\omega _{\varepsilon }\Bigr )\Bigr ) =\lambda _\varepsilon ^\omega \mathcal {C}(u^\omega _{\varepsilon }). \]
It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\lbrace \lambda _\varepsilon ^{\omega ,k},u^{\omega ,k}_\varepsilon \rbrace $ of $k$th eigenpairs converges to the $k$th eigenpair $\lbrace \lambda ^k,u^k\rbrace $ of the homogenized eigenvalue problem \[ - {\rm div}( b(\nabla u) ) = \lambda {\overline{\mathcal {C}}}(u). \]
For the case of $p$-Laplacian type maps we characterize $b$ explicitly.
LA - eng
KW - stochastic; homogenization; eigenvalue; stochastic; homogenization; eigenvalue
UR - http://eudml.org/doc/116469
ER -
References
top- Azorero, J. P. García, Alonso, I. Peral, Existence and nonuniqueness for the -Laplacian: Nonlinear eigenvalues, Commun. Partial Differ. Equations 12 (1987), 1389-1430. (1987) MR0912211
- Baffico, L., Conca, C., Rajesh, M., Homogenization of a class of nonlinear eigenvalue problems, Proc. R. Soc. Edinb. 136A (2006), 7-22. (2006) Zbl1105.35010MR2217505
- Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic Analysis for Periodic Structures, North-Holland Amsterdam (1978). (1978) Zbl0404.35001MR0503330
- Chiadò-Piat, V., Maso, G. Dal, Defranceschi, A., G-convergence of monotone operators, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123-160. (1990) MR1065871
- Chiadò-Piat, V., Defranceschi, A., 10.1016/0362-546X(90)90102-M, Nonlinear Anal., Theory Methods Appl. 14 (1990), 717-732. (1990) MR1049117DOI10.1016/0362-546X(90)90102-M
- Maso, G. Dal, An Introduction to -convergence, Birkhäuser Boston (1992). (1992) MR1201152
- Defranceschi, A., 10.3233/ASY-1989-2103, Asymptotic Anal. 2 (1989), 21-37. (1989) Zbl0681.47023MR0991415DOI10.3233/ASY-1989-2103
- Champion, T., Pascale, L. de, Asymptotic behaviour of nonlinear eigenvalue problems involving -Laplacian type operators, Proc. R. Soc. Edinb. 37A (2007), 1179-1195. (2007) Zbl1134.35013MR2376876
- Dunford, N., Schwartz, J. T., Linear Operators. Part 1: General Theory, John Wiley & Sons New York (1957). (1957) MR1009162
- Pankov, Y. Efendiev A., 10.1137/030600266, Multiscale Model. Simul. 2 (2004), 237-268. (2004) MR2043587DOI10.1137/030600266
- Lindqvist, P., On a nonlinear eigenvalue problem. Fall School in Analysis, Jyväskylä 1994, Finland, Report 68 Univ. Jyväskylä Jyväskylä (1995), 33-54. (1995) MR1351043
- Svanstedt, N., 10.1016/S0362-546X(97)00532-4, Nonlinear Anal., Theory Methods Appl. 36 (1999), 807-842. (1999) Zbl0933.35020MR1682689DOI10.1016/S0362-546X(97)00532-4
- Svanstedt, N., 10.3934/nhm.2007.2.181, Netw. Heterog. Media 2 (2007), 181-192. (2007) MR2291817DOI10.3934/nhm.2007.2.181
- Svanstedt, N., 10.1007/s10492-008-0017-x, Appl. Math. 53 (2008), 143-155. (2008) MR2399903DOI10.1007/s10492-008-0017-x
- Zhikov, V. V., Kozlov, S. M., Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals, Springer Berlin (1994). (1994) MR1329546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.