Nonlinear bounded control for time-delay systems
Germain Garcia; Sophie Tarbouriech
Kybernetika (2001)
- Volume: 37, Issue: 4, page [381]-396
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGarcia, Germain, and Tarbouriech, Sophie. "Nonlinear bounded control for time-delay systems." Kybernetika 37.4 (2001): [381]-396. <http://eudml.org/doc/33543>.
@article{Garcia2001,
abstract = {A method to derive a nonlinear bounded state feedback controller for a linear continuous-time system with time-delay in the state is proposed. The controllers are based on an $e$-parameterized family of algebraic Riccati equations or on an $e$-parameterized family of LMI optimization problems. Hence, nested ellipsoidal neighborhoods of the origin are determined. Thus, from the Lyapunov–Krasovskii theorem, the uniform asymptotic stability of the closed-loop system is guaranteed and a certain performance level is attained through a quadratic cost function.},
author = {Garcia, Germain, Tarbouriech, Sophie},
journal = {Kybernetika},
keywords = {state feedback controller; time-delay; state feedback controller; time-delay},
language = {eng},
number = {4},
pages = {[381]-396},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Nonlinear bounded control for time-delay systems},
url = {http://eudml.org/doc/33543},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Garcia, Germain
AU - Tarbouriech, Sophie
TI - Nonlinear bounded control for time-delay systems
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 4
SP - [381]
EP - 396
AB - A method to derive a nonlinear bounded state feedback controller for a linear continuous-time system with time-delay in the state is proposed. The controllers are based on an $e$-parameterized family of algebraic Riccati equations or on an $e$-parameterized family of LMI optimization problems. Hence, nested ellipsoidal neighborhoods of the origin are determined. Thus, from the Lyapunov–Krasovskii theorem, the uniform asymptotic stability of the closed-loop system is guaranteed and a certain performance level is attained through a quadratic cost function.
LA - eng
KW - state feedback controller; time-delay; state feedback controller; time-delay
UR - http://eudml.org/doc/33543
ER -
References
top- Bernstein D. S., Michel A. N., Special issue: Saturating actuators, Internat. J. Robust and Nonlinear Control 5 (1995), 375–380 (1995) MR1346405
- Siljak D. D., Large Scale System: Stability and Structure, North Holland, New York 1978 MR0595867
- Chen B. S., Wang S. S., Lu H. C., 10.1080/00207178808906058, Internat. J. Control 47 (1988), 867–881 (1988) Zbl0636.93063MR0935055DOI10.1080/00207178808906058
- Dugard L., (eds.) E. I. Verriest, Stability and Control of Time-delay Systems, (Lecture Notes in Computer Science 228.), Springer–Verlag, London 1997 Zbl0901.00019MR1482570
- Garcia G., Tarbouriech S., Suarez, R., Ramirez J. Alvarez, 10.1109/9.769385, IEEE Trans. Automat. Control 44 (1999), 6, 1254–1258 (1999) MR1689146DOI10.1109/9.769385
- Hennet J. C., Tarbouriech S., 10.1016/S0005-1098(96)00185-9, Automatica 33 (1997), 347–354 (1997) Zbl0889.93049MR1442553DOI10.1016/S0005-1098(96)00185-9
- Hmamed A., Benzaouia, A., Bensalah H., 10.1109/9.412630, IEEE Trans. Automat. Control 40 (1995), 1615–1619 (1995) Zbl0835.93048MR1347839DOI10.1109/9.412630
- Kapila V., Haddad W. M., Robust stabilization for systems with parametric uncertainty and time delay, J. Franklin Inst. 336 (1999), 473–480 (1999) Zbl0978.93068MR1680229
- Kharitonov V., Robust stability analysis of time-delay systems: a survey, In: Proc. IFAC Symposium on System Structure and Control, Nantes 1998
- Klai M., Tarbouriech, S., Burgat C., Some independent-time-delay stabilization of linear systems with saturating controls, In: Proc. IEE Control’94, Coventry 1994, pp. 1358–1363 (1994)
- Lafay J. F., Conte G., Analysis and design methods for delay systems, In: Proc. 34th IEEE Conference on Decision and Control, New Orleans 1995, pp. 2035–2069 (1995)
- Niculescu S.-I., Dion J.-M., Dugard L., 10.1109/9.489216, IEEE Trans. Automat. Control 41 (1996), 742–747 (1996) Zbl0851.93067MR1387004DOI10.1109/9.489216
- Petersen I. R., 10.1016/0167-6911(87)90102-2, Systems Control Lett. 8 (1987), 351–357 (1987) Zbl0618.93056MR0884885DOI10.1016/0167-6911(87)90102-2
- Stoorvogel A. A., Saberi A., Special issue: Control problems with constraints, Internat. J. Robust and Nonlinear Control 9 (1999), 583–717 (1999) MR1712282
- Su T. J., Liu P. L., Tsay J. T., Stabilization of delay-dependence for saturating actuator systems, In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991, pp. 2891–2892 (1991)
- Suarez R., Alvarez–Ramirez, J., Solis–Daun J., 10.1002/(SICI)1099-1239(199709)7:9<835::AID-RNC216>3.0.CO;2-P, Internat. J. Robust and Nonlinear Control 7 (1997), 835–845 (1997) Zbl0888.93050MR1470370DOI10.1002/(SICI)1099-1239(199709)7:9<835::AID-RNC216>3.0.CO;2-P
- Tarbouriech S., Local stabilization of continuous-time delay systems with bounded inputs, In: Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Computer Science 228), Springer–Verlag, London 1997, pp. 302–317 (1997) MR1482584
- Tarbouriech S., Garcia G., Robust stabilityof uncertain linear delay systems with saturating inputs: an LMI approach, In: Proc. IFAC Symposium on System Structure and Control, Nantes 1998
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.