Schwarz-like methods for approximate solving cooperative systems
Kybernetika (2004)
- Volume: 40, Issue: 5, page [611]-624
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMarek, Ivo. "Schwarz-like methods for approximate solving cooperative systems." Kybernetika 40.5 (2004): [611]-624. <http://eudml.org/doc/33723>.
@article{Marek2004,
abstract = {The aim of this contribution is to propose and analyze some computational means to approximate solving mathematical problems appearing in some recent studies devoted to biological and chemical networks.},
author = {Marek, Ivo},
journal = {Kybernetika},
keywords = {Schwarz iterative solution; cooperative systems; steady states of evolution problems; Schwarz iterative solution; cooperative system; steady states of evolution problem},
language = {eng},
number = {5},
pages = {[611]-624},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Schwarz-like methods for approximate solving cooperative systems},
url = {http://eudml.org/doc/33723},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Marek, Ivo
TI - Schwarz-like methods for approximate solving cooperative systems
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 5
SP - [611]
EP - 624
AB - The aim of this contribution is to propose and analyze some computational means to approximate solving mathematical problems appearing in some recent studies devoted to biological and chemical networks.
LA - eng
KW - Schwarz iterative solution; cooperative systems; steady states of evolution problems; Schwarz iterative solution; cooperative system; steady states of evolution problem
UR - http://eudml.org/doc/33723
ER -
References
top- Benzi M., Frommer A., Nabben, R., Szyld D., 10.1007/s002110100275, Numer. Math. 89 (2002), 605–639 Zbl0991.65037MR1865505DOI10.1007/s002110100275
- Benzi M., Szyld D. B., 10.1007/s002110050265, Numer. Math. 76 (1997), 309–321 (1997) MR1452511DOI10.1007/s002110050265
- Berman A., Plemmons R., Non-negative Matrices in the Mathematical Sciences, Academic Press, New York 1979 MR0544666
- Bohl E., 10.1002/zamm.19910710707, Z. Angew. Math. Mech. 7/8 (1991), 223–231 (1991) Zbl0792.65057MR1121486DOI10.1002/zamm.19910710707
- Bohl E., Constructing amplification via chemical circuits, In: Biomedical Modeling Simulation (J. Eisarfeld, D. S. Leonis, and M. Witken, eds.), Elsevier Science Publ. B. V. 1992, pp. 331–334 (1992)
- Bohl E., Structural amplification in chemical networks, In: Complexity, Chaos and Biological Evolution (E. Mosekilde and L. Mosekilde, eds.), Plenum Press, New York 1991, pp. 119–128 (1991)
- Bohl E., Boos W., 10.1006/jtbi.1996.0342, J. Theoret. Biol. 186 (1997), 65–74 (1997) DOI10.1006/jtbi.1996.0342
- Bohl E., Lancaster P., 10.1016/0024-3795(93)90524-R, Linear Algebra Appl. 180 (1993), 65–74 (1993) MR1206409DOI10.1016/0024-3795(93)90524-R
- Bohl E., Marek I., 10.1016/0377-0427(95)00052-6, J. Comput. Appl. Math. 63 (1995), 27–47 (1995) Zbl0845.92003MR1365549DOI10.1016/0377-0427(95)00052-6
- Bohl E., Marek I., 10.1016/0377-0427(94)00081-B, An amplification effect measured in the cascade of vision. J. Comput. Appl. Math. 60 (1994), 13–28 (1994) MR1354645DOI10.1016/0377-0427(94)00081-B
- Bohl E., Marek I., 10.1007/BF01300579, Integral Equations Operator Theory 34 (1999), 251–269 (1999) MR1689389DOI10.1007/BF01300579
- Bohl E., Marek I., Existence and uniqueness results for nonlinear cooperative systems, Oper. Theory: Adv. Appl. 130 (2001), 153–170 Zbl1023.47052MR1902006
- Hille E., Phillips R. S., Functional Analysis and Semigroups (Amer, Math. Society Coll. Publ. Vol. XXXI). Third printing of Revised Edition Providence, RI 1968
- Krein M. G., Rutman M. A., Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk III (1948), 1, 3–95. (In Russian.) English translation in Amer. Math. Soc. Transl. 26 (1950) (1948) Zbl0030.12902MR0027128
- Marek I., 10.1137/0119060, Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 608–628 (1970) Zbl0219.47022MR0415405DOI10.1137/0119060
- Marek I., Szyld D., Algebraic Schwarz methods for the numerical solution of Markov chains, Linear Algebra Appl. Submitted Zbl1050.65030MR2066608
- Marek I., Žitný K., Analytic Theory of Matrices for Applied Sciences, Vol 1, (Teubner Texte zur Mathematik Band 60.) Teubner, Leipzig 1983 MR0731071
- Ortega J. M., Rheinboldt W., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York – San – Francisco – London 1970 Zbl0949.65053MR0273810
- Schaefer H. H., Banach Lattices and Positive Operators, Springer–Verlag, Berlin – Heidelberg – New York 1974 Zbl0296.47023MR0423039
- Stewart W. J., Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ 1994 Zbl0821.65099MR1312831
- Taylor A. E., Lay D. C., Introduction to Functional Analysis, Second edition. Wiley, New York 1980 Zbl0654.46002MR0564653
- Tralau C., Greller G., Pajatsch M., Boos, W., Bohl E., 10.1006/jtbi.2000.2140, J. Theoret. Biol. 207 (2000), 1–14 DOI10.1006/jtbi.2000.2140
- Varga R. S., Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, NJ 1962. Second edition, revised and expanded. Springer–Verlag, Berlin – Heidelberg – New York 2000 (1962) MR1753713
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.