The technique of splitting operators in perturbation control theory

Michail M. Konstantinov; Petko Hr. Petkov; Nikolaĭ D. Hristov

Kybernetika (2005)

  • Volume: 41, Issue: 1, page [15]-32
  • ISSN: 0023-5954

Abstract

top
The paper presents the technique of splitting operators, intended for perturbation analysis of control problems involving unitary matrices. Combined with the technique of Lyapunov majorants and the application of the Banach or Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the general feedback synthesis problem, and the pole assignment problem in particular, as well as other basic problems in control theory and linear algebra.

How to cite

top

Konstantinov, Michail M., Petkov, Petko Hr., and Hristov, Nikolaĭ D.. "The technique of splitting operators in perturbation control theory." Kybernetika 41.1 (2005): [15]-32. <http://eudml.org/doc/33736>.

@article{Konstantinov2005,
abstract = {The paper presents the technique of splitting operators, intended for perturbation analysis of control problems involving unitary matrices. Combined with the technique of Lyapunov majorants and the application of the Banach or Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the general feedback synthesis problem, and the pole assignment problem in particular, as well as other basic problems in control theory and linear algebra.},
author = {Konstantinov, Michail M., Petkov, Petko Hr., Hristov, Nikolaĭ D.},
journal = {Kybernetika},
keywords = {perturbation analysis; canonical forms; feedback synthesis; perturbation analysis; canonical form; feedback synthesis},
language = {eng},
number = {1},
pages = {[15]-32},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The technique of splitting operators in perturbation control theory},
url = {http://eudml.org/doc/33736},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Konstantinov, Michail M.
AU - Petkov, Petko Hr.
AU - Hristov, Nikolaĭ D.
TI - The technique of splitting operators in perturbation control theory
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 1
SP - [15]
EP - 32
AB - The paper presents the technique of splitting operators, intended for perturbation analysis of control problems involving unitary matrices. Combined with the technique of Lyapunov majorants and the application of the Banach or Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the general feedback synthesis problem, and the pole assignment problem in particular, as well as other basic problems in control theory and linear algebra.
LA - eng
KW - perturbation analysis; canonical forms; feedback synthesis; perturbation analysis; canonical form; feedback synthesis
UR - http://eudml.org/doc/33736
ER -

References

top
  1. Grebenikov E. A., Ryabov, Yu. A., Constructive Methods for Analysis of Nonlinear Systems (in Russian), Nauka, Moscow 1979 MR0571543
  2. Hermann R., Martin C. L., 10.1109/TAC.1977.1101395, Part I. IEEE Trans. Automatic Control 22 (1977), 19–25 (1977) MR0444172DOI10.1109/TAC.1977.1101395
  3. Higham N. J., 10.1137/0614023, SIAM J. Matrix Anal. Appl. 14 (1993), 317–333 (1993) Zbl0776.65047MR1211791DOI10.1137/0614023
  4. Kantorovich L. V., Akilov G. P., Functional Analysis in Normed Spaces, Pergamon, New York 1964 Zbl0127.06104MR0213845
  5. Konstantinov M., Mehrmann, V., Petkov P., Perturbation Analysis for the Hamiltonian Schur Form, Technical Report 98-17, Fakultät für Mathematik, TU-Chemnitz, Chemnitz 1998 
  6. Konstantinov M. M., Petkov, P. Hr., Christov N. D., Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups, Kybernetika 17 (1981), 413–424 (1981) Zbl0474.93020MR0648213
  7. Konstantinov M. M., Petkov, P. Hr., Christov N. D., 10.1137/S089547989120267X, SIAM J. Matrix Anal. Appl. 15 (1994), 383–392 (1994) Zbl0798.15010MR1266593DOI10.1137/S089547989120267X
  8. Konstantinov M. M., Petkov, P. Hr., Christov N. D., 10.1109/9.566671, IEEE Trans. Automatic Control 42 (1997), 568–573 (1997) Zbl0878.93020MR1442596DOI10.1109/9.566671
  9. Konstantinov M. M., Petkov P. Hr., Christov N. D., Gu D. W., Mehrmann V., Sensitivity of Lyapunov equations, In: Advances in Intelligent Systems and Computer Science (N. E. Mastorakis, ed.). WSES Press, 1999, pp. 289–292 (1999) 
  10. Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I., Perturbation Analysis in Finite Dimensional Spaces, Tech. Rep. 96–18, Engineering Department, Leicester University, Leicester 1996 
  11. Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I., Perturbation analysis of orthogonal canonical forms, Linear Algebra Appl. 251 (1997), 267–291 (1997) Zbl0928.93012MR1421278
  12. Ortega J., Rheinboldt W., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York 1970 Zbl0949.65053MR0273810
  13. Petkov P. Hr., Christov N. D., Konstantinov M. M., A new approach to the perturbation analysis of linear control problems, Preprints 11th IFAC World Congr., Tallin 1990, pp. 311–316 (1990) MR0777050
  14. Petkov P. Hr., Christov N. D., Konstantinov M. M., Computational Methods for Linear Control Systems, Prentice–Hall, New York 1991 Zbl0790.93001
  15. Petkov P. Hr., Christov N. D., Konstantinov M. M., Sensitivity of orthogonal canonical forms for single-input systems, In: Proc. 22nd Spring Conference of UBM, Sofia 1992, pp. 66–73 (1992) 
  16. Petkov P. Hr., Christov N. D., Konstantinov M. M., Perturbation analysis of orthogonal canonical forms and pole assignment for single-input systems, In: Proc. 2nd European Control Conference, Groningen 1993, pp. 1397–1400 (1993) 
  17. Petkov P. Hr., Christov N. D., Konstantinov M. M., Perturbation controllability analysis of linear multivariable systems, Preprints 12th IFAC World Congress, Sydney 1993, pp. 491–494 (1993) 
  18. Sun J.-G., On perturbation bounds for the QR factorization, Linear Algebra Appl. 215 (1995), 95–111 (1995) Zbl0816.15010MR1317473
  19. Sun J.-G., 10.1137/S0895479892242189, SIAM J. Matrix Anal. Appl. 16 (1995), 1328–1340 (1995) Zbl0878.15006MR1351473DOI10.1137/S0895479892242189

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.