Dynamic dependence ordering for Archimedean copulas and distorted copulas
Kybernetika (2008)
- Volume: 44, Issue: 6, page 777-794
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCharpentier, Arthur. "Dynamic dependence ordering for Archimedean copulas and distorted copulas." Kybernetika 44.6 (2008): 777-794. <http://eudml.org/doc/33964>.
@article{Charpentier2008,
abstract = {This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes $X$, to compare the dependence of $X$ given $X>t$, and $X$ given $X>s$, where $s>t$. More precisely, analytical results will be obtained in the case the survival copula of $X$ is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details.},
author = {Charpentier, Arthur},
journal = {Kybernetika},
keywords = {Archimedean copulas; Cox model; dependence; distorted copulas; ordering; Archimedean copulas; cox model; dependence; distorted copulas; ordering},
language = {eng},
number = {6},
pages = {777-794},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Dynamic dependence ordering for Archimedean copulas and distorted copulas},
url = {http://eudml.org/doc/33964},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Charpentier, Arthur
TI - Dynamic dependence ordering for Archimedean copulas and distorted copulas
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 6
SP - 777
EP - 794
AB - This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes $X$, to compare the dependence of $X$ given $X>t$, and $X$ given $X>s$, where $s>t$. More precisely, analytical results will be obtained in the case the survival copula of $X$ is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details.
LA - eng
KW - Archimedean copulas; Cox model; dependence; distorted copulas; ordering; Archimedean copulas; cox model; dependence; distorted copulas; ordering
UR - http://eudml.org/doc/33964
ER -
References
top- Ali M., Mikhail, N., Haq N. S., 10.1016/0047-259X(78)90063-5, J. Multivariate Anal. 8 (1978), 405–412 (1978) MR0512610DOI10.1016/0047-259X(78)90063-5
- Bandeen-Roche K. J., Liang K. Y., 10.1093/biomet/83.1.29, Biometrika 83 (1996), 29–39 (1996) MR1399153DOI10.1093/biomet/83.1.29
- Charpentier J., Juri A., 10.1239/jap/1152413742, J. Appl. Probab. 44 (2006), 563–586 Zbl1117.62049MR2248584DOI10.1239/jap/1152413742
- Charpentier A., Segers J., 10.1016/j.insmatheco.2006.08.004, Insurance Math. Econom. 40 (2007), 525–532 Zbl1183.62086MR2311548DOI10.1016/j.insmatheco.2006.08.004
- Charpentier A., Segers J., 10.1016/j.spl.2007.07.014, Prob. Statist. Lett. 78 (2008), 412–419 Zbl1139.62303MR2396414DOI10.1016/j.spl.2007.07.014
- Charpentier A., Segers J., Tails of Archimedean copulas, Submitted
- Clayton D. G., 10.1093/biomet/65.1.141, Biometrika 65 (1978), 141–151 (1978) Zbl0394.92021MR0501698DOI10.1093/biomet/65.1.141
- Colangelo A., Scarsini, M., Shaked M., 10.1016/j.jmva.2004.11.006, J. Multivariate Anal. 97 (2006), 46–78 Zbl1086.62009MR2208843DOI10.1016/j.jmva.2004.11.006
- Cooper R., 10.1112/jlms/s1-2.3.159, J. London Math. Soc. 2 (1927), 159–163 (1927) MR1574413DOI10.1112/jlms/s1-2.3.159
- Cooper R., The converse of the Cauchy–Holder inequality and the solutions of the inequality , Proc. London Math. Soc. 2 (1927), 415–432 (1927) MR1576944
- Durante F., Sempi C., 10.1155/IJMMS.2005.645, Internat. J. Math. Math. Sci. 4 (2005), 645–655 Zbl1078.62055MR2172400DOI10.1155/IJMMS.2005.645
- Durante F., Foschi, F., Spizzichino F., Threshold copulas and positive dependence, Statist. Probab. Lett., to appear Zbl1148.62032MR2474379
- Feller W., An Introduction to Probability Theory and Its Applications, Volume 2. Wiley, New York 1971 Zbl0598.60003MR0270403
- Geluk J. L., Vries C. G. de, 10.1016/j.insmatheco.2005.06.010, Insurance Math. Econom. 38 (2006), 39–56 Zbl1112.62011MR2197302DOI10.1016/j.insmatheco.2005.06.010
- Genest C., The joy of copulas: bivariate distributions with uniform marginals, Amer. Statist. 40 (1086), 4, 280–283 MR0866908
- Genest C., MacKay R. J., Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données, La revue canadienne de statistique 14 (1986), 145–159 (1986) Zbl0605.62049MR0849869
- Genest C., Rivest L. P., 10.1016/S0167-7152(01)00047-5, Statist. Probab. Lett. 53 (2001), 391–399 Zbl0982.62056MR1856163DOI10.1016/S0167-7152(01)00047-5
- Gumbel E. J., 10.1080/01621459.1961.10482117, J. Amer. Statist. Assoc. 56 (1961), 335–349 (1961) Zbl0099.14502MR0158451DOI10.1080/01621459.1961.10482117
- Joe H., Multivariate Models and Dependence Concepts, Chapman&Hall, London 1997 Zbl0990.62517MR1462613
- Junker M., Szimayer, S., Wagner N., 10.1016/j.jbankfin.2005.05.014, J. Banking & Finance 30 (2006), 1171–1199 DOI10.1016/j.jbankfin.2005.05.014
- Juri A., Wüthrich M. V., 10.1016/S0167-6687(02)00121-X, Insurance Math. Econom. 30 (2002), 411–427 Zbl1039.62043MR1921115DOI10.1016/S0167-6687(02)00121-X
- Juri A., Wüthrich M. V., 10.1023/B:EXTR.0000031180.93684.85, Extremes 6 (2003), 213–246 Zbl1049.62055MR2081852DOI10.1023/B:EXTR.0000031180.93684.85
- Klement E. P., Mesiar, R., Pap E., Transformations of copulas, Kybernetika 41 (2005), 425–434 MR2180355
- Lehmann E. L., 10.1214/aoms/1177699260, Ann. Math. Statist. 37 (1966), 1137–1153 (1966) Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
- Ling C. M., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
- McNeil A. J., Neslehova J., Multivariate Archimedean copulas, D-monotone functions and L1-norm symmetric distributions, Ann. Statist. To appear
- Morillas P. M., 10.1007/s001840400330, Metrika 61 (2005), 169–184 Zbl1079.62056MR2159414DOI10.1007/s001840400330
- Nelsen R., An Introduction to Copulas, Springer, New York 1999 Zbl1152.62030MR1653203
- Oakes D., 10.1080/01621459.1989.10478795, J. Amer. Statist. Assoc. 84 (1989), 487–493 (1989) Zbl0677.62094MR1010337DOI10.1080/01621459.1989.10478795
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland, Amsterdam 1959 Zbl0546.60010MR0790314
- Sklar A., Fonctions de répartition à dimensions et leurs marges, Publ. de l’Institut de Statistique de l’Université de Paris 8 (1959), 229–231 (1959) MR0125600
- Wang S., Nelsen, R., Valdez E. A., Distortion of multivariate distributions: adjustment for uncertainty in aggregating risks, Mimeo 2005
- Zheng M., Klein J. P., 10.1093/biomet/82.1.127, Biometrika 82 (1995), 127–138 (1995) Zbl0823.62099MR1332844DOI10.1093/biomet/82.1.127
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.