Dynamic dependence ordering for Archimedean copulas and distorted copulas

Arthur Charpentier

Kybernetika (2008)

  • Volume: 44, Issue: 6, page 777-794
  • ISSN: 0023-5954

Abstract

top
This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes X , to compare the dependence of X given X > t , and X given X > s , where s > t . More precisely, analytical results will be obtained in the case the survival copula of X is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details.

How to cite

top

Charpentier, Arthur. "Dynamic dependence ordering for Archimedean copulas and distorted copulas." Kybernetika 44.6 (2008): 777-794. <http://eudml.org/doc/33964>.

@article{Charpentier2008,
abstract = {This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes $X$, to compare the dependence of $X$ given $X>t$, and $X$ given $X>s$, where $s>t$. More precisely, analytical results will be obtained in the case the survival copula of $X$ is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details.},
author = {Charpentier, Arthur},
journal = {Kybernetika},
keywords = {Archimedean copulas; Cox model; dependence; distorted copulas; ordering; Archimedean copulas; cox model; dependence; distorted copulas; ordering},
language = {eng},
number = {6},
pages = {777-794},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Dynamic dependence ordering for Archimedean copulas and distorted copulas},
url = {http://eudml.org/doc/33964},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Charpentier, Arthur
TI - Dynamic dependence ordering for Archimedean copulas and distorted copulas
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 6
SP - 777
EP - 794
AB - This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes $X$, to compare the dependence of $X$ given $X>t$, and $X$ given $X>s$, where $s>t$. More precisely, analytical results will be obtained in the case the survival copula of $X$ is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details.
LA - eng
KW - Archimedean copulas; Cox model; dependence; distorted copulas; ordering; Archimedean copulas; cox model; dependence; distorted copulas; ordering
UR - http://eudml.org/doc/33964
ER -

References

top
  1. Ali M., Mikhail, N., Haq N. S., 10.1016/0047-259X(78)90063-5, J. Multivariate Anal. 8 (1978), 405–412 (1978) MR0512610DOI10.1016/0047-259X(78)90063-5
  2. Bandeen-Roche K. J., Liang K. Y., 10.1093/biomet/83.1.29, Biometrika 83 (1996), 29–39 (1996) MR1399153DOI10.1093/biomet/83.1.29
  3. Charpentier J., Juri A., 10.1239/jap/1152413742, J. Appl. Probab. 44 (2006), 563–586 Zbl1117.62049MR2248584DOI10.1239/jap/1152413742
  4. Charpentier A., Segers J., 10.1016/j.insmatheco.2006.08.004, Insurance Math. Econom. 40 (2007), 525–532 Zbl1183.62086MR2311548DOI10.1016/j.insmatheco.2006.08.004
  5. Charpentier A., Segers J., 10.1016/j.spl.2007.07.014, Prob. Statist. Lett. 78 (2008), 412–419 Zbl1139.62303MR2396414DOI10.1016/j.spl.2007.07.014
  6. Charpentier A., Segers J., Tails of Archimedean copulas, Submitted 
  7. Clayton D. G., 10.1093/biomet/65.1.141, Biometrika 65 (1978), 141–151 (1978) Zbl0394.92021MR0501698DOI10.1093/biomet/65.1.141
  8. Colangelo A., Scarsini, M., Shaked M., 10.1016/j.jmva.2004.11.006, J. Multivariate Anal. 97 (2006), 46–78 Zbl1086.62009MR2208843DOI10.1016/j.jmva.2004.11.006
  9. Cooper R., 10.1112/jlms/s1-2.3.159, J. London Math. Soc. 2 (1927), 159–163 (1927) MR1574413DOI10.1112/jlms/s1-2.3.159
  10. Cooper R., The converse of the Cauchy–Holder inequality and the solutions of the inequality g ( x + y ) g ( x ) + g ( y ) , Proc. London Math. Soc. 2 (1927), 415–432 (1927) MR1576944
  11. Durante F., Sempi C., 10.1155/IJMMS.2005.645, Internat. J. Math. Math. Sci. 4 (2005), 645–655 Zbl1078.62055MR2172400DOI10.1155/IJMMS.2005.645
  12. Durante F., Foschi, F., Spizzichino F., Threshold copulas and positive dependence, Statist. Probab. Lett., to appear Zbl1148.62032MR2474379
  13. Feller W., An Introduction to Probability Theory and Its Applications, Volume 2. Wiley, New York 1971 Zbl0598.60003MR0270403
  14. Geluk J. L., Vries C. G. de, 10.1016/j.insmatheco.2005.06.010, Insurance Math. Econom. 38 (2006), 39–56 Zbl1112.62011MR2197302DOI10.1016/j.insmatheco.2005.06.010
  15. Genest C., The joy of copulas: bivariate distributions with uniform marginals, Amer. Statist. 40 (1086), 4, 280–283 MR0866908
  16. Genest C., MacKay R. J., Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données, La revue canadienne de statistique 14 (1986), 145–159 (1986) Zbl0605.62049MR0849869
  17. Genest C., Rivest L. P., 10.1016/S0167-7152(01)00047-5, Statist. Probab. Lett. 53 (2001), 391–399 Zbl0982.62056MR1856163DOI10.1016/S0167-7152(01)00047-5
  18. Gumbel E. J., 10.1080/01621459.1961.10482117, J. Amer. Statist. Assoc. 56 (1961), 335–349 (1961) Zbl0099.14502MR0158451DOI10.1080/01621459.1961.10482117
  19. Joe H., Multivariate Models and Dependence Concepts, Chapman&Hall, London 1997 Zbl0990.62517MR1462613
  20. Junker M., Szimayer, S., Wagner N., 10.1016/j.jbankfin.2005.05.014, J. Banking & Finance 30 (2006), 1171–1199 DOI10.1016/j.jbankfin.2005.05.014
  21. Juri A., Wüthrich M. V., 10.1016/S0167-6687(02)00121-X, Insurance Math. Econom. 30 (2002), 411–427 Zbl1039.62043MR1921115DOI10.1016/S0167-6687(02)00121-X
  22. Juri A., Wüthrich M. V., 10.1023/B:EXTR.0000031180.93684.85, Extremes 6 (2003), 213–246 Zbl1049.62055MR2081852DOI10.1023/B:EXTR.0000031180.93684.85
  23. Klement E. P., Mesiar, R., Pap E., Transformations of copulas, Kybernetika 41 (2005), 425–434 MR2180355
  24. Lehmann E. L., 10.1214/aoms/1177699260, Ann. Math. Statist. 37 (1966), 1137–1153 (1966) Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
  25. Ling C. M., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
  26. McNeil A. J., Neslehova J., Multivariate Archimedean copulas, D-monotone functions and L1-norm symmetric distributions, Ann. Statist. To appear 
  27. Morillas P. M., 10.1007/s001840400330, Metrika 61 (2005), 169–184 Zbl1079.62056MR2159414DOI10.1007/s001840400330
  28. Nelsen R., An Introduction to Copulas, Springer, New York 1999 Zbl1152.62030MR1653203
  29. Oakes D., 10.1080/01621459.1989.10478795, J. Amer. Statist. Assoc. 84 (1989), 487–493 (1989) Zbl0677.62094MR1010337DOI10.1080/01621459.1989.10478795
  30. Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland, Amsterdam 1959 Zbl0546.60010MR0790314
  31. Sklar A., Fonctions de répartition à n dimensions et leurs marges, Publ. de l’Institut de Statistique de l’Université de Paris 8 (1959), 229–231 (1959) MR0125600
  32. Wang S., Nelsen, R., Valdez E. A., Distortion of multivariate distributions: adjustment for uncertainty in aggregating risks, Mimeo 2005 
  33. Zheng M., Klein J. P., 10.1093/biomet/82.1.127, Biometrika 82 (1995), 127–138 (1995) Zbl0823.62099MR1332844DOI10.1093/biomet/82.1.127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.