Spectral resolutions for σ -complete lattice effect algebras

Sylvia Pulmannová

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 5, page 555-571
  • ISSN: 0232-0525

How to cite

top

Pulmannová, Sylvia. "Spectral resolutions for $\sigma $-complete lattice effect algebras." Mathematica Slovaca 56.5 (2006): 555-571. <http://eudml.org/doc/34626>.

@article{Pulmannová2006,
author = {Pulmannová, Sylvia},
journal = {Mathematica Slovaca},
keywords = {-algebra; Dedekind -complete -group; Loomis-Sikorski theorem; tribe; spectral measure; lattice effect algebra; -complete effect algebra; compatibility; block},
language = {eng},
number = {5},
pages = {555-571},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Spectral resolutions for $\sigma $-complete lattice effect algebras},
url = {http://eudml.org/doc/34626},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Pulmannová, Sylvia
TI - Spectral resolutions for $\sigma $-complete lattice effect algebras
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 5
SP - 555
EP - 571
LA - eng
KW - -algebra; Dedekind -complete -group; Loomis-Sikorski theorem; tribe; spectral measure; lattice effect algebra; -complete effect algebra; compatibility; block
UR - http://eudml.org/doc/34626
ER -

References

top
  1. BARBIERI G.-WEBER H., Measures on clans and on MV-algebras, In: Handbook of Measure Theorу, vol II (E. Pap, ed.), Elsevier, Amsterdam, 2002, pp. 911-945 (Chap. 22). Zbl1019.28009MR1954632
  2. BUTNARIU D.-KLEMENT E., Triangular-norm-based measures and their Markov kernel representation, J. Math. Anal. Appl. 162 (1991), 111-143. (1991) Zbl0751.60003MR1135265
  3. CHANG C. C., Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302
  4. CHANG C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
  5. CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundation of Many-Valued Reasoning, Kluwer Acad. PubL, Dordrecht, 2000. MR1786097
  6. CHOVANEC F.-KOPKA F., D-lattices, Internat. J. Theoret. Phys. 34 (1995), 1297-1302. (1995) Zbl0840.03046MR1353674
  7. DVUREČENSKIJ A., [unknown], J. Austral. Math. Soc. Ser. A 68 (2000), 261-277. Zbl0958.06006MR1738040
  8. DVUREČENSKIJ A., MV-observables and MV-algebras, J. Math. Anal. Appl. 259 (2001), 413-428. Zbl0992.03081MR1842068
  9. DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl0987.81005MR1861369
  10. DVUREČENSKIJ A.-PULMANNOVÁ S., Conditional probability on a-MV algebras, Fuzzy Sets and Systems 155 (2005), 102-118. MR2206657
  11. FOULIS D. J.-BENNETT M. K., Effect algebras and unsharp quantum logic, Found. Phys. 24 (1994), 1325-1346. (1994) MR1304942
  12. FOULIS D. J., Compressible groups, Math. Slovaca 53 (2003), 433-455. Zbl1114.06012MR2038512
  13. FOULIS D. J., Compressions on partially ordered abelian groups, Proc. Amer. Math.Soc. 132 (2004), 3581-3587. Zbl1063.47003MR2084080
  14. FOULIS D. J., Spectral resolution in a Rickart comgroup, Rep. Math. Phys. 54 (2004), 319-340. Zbl1161.81310MR2107868
  15. FOULIS D. J., Compressible groups with general comparability, Math. Slovaca. 55 (2005), 409-429. Zbl1114.06012MR2181781
  16. FOULIS D. J., MV and Heyting effect algebras, Found. Phys. 30 (2000), 1687-1706. MR1810197
  17. GIUNTINI R.-GREULING H., Toward a formal language for unsharp properties, Found. Phys. 19 (1989), 931-945. (1989) MR1013913
  18. GOODEARL K. R., Partially Ordered Abelian Groups with Interpolation, Math. Surveys Monogr. 20, Amer. Math. Soc, Providence, RI, 1986. (1986) Zbl0589.06008MR0845783
  19. GUDDER S. P., S-dominating effect algebras, Internat. J. Theoret. Phys. 37 (1998), 915-923. (1998) Zbl0932.03072MR1624277
  20. GUDDER S. P., Compressible effect algebras, Rep. Math. Phys. 54 (2004), 93-114. Zbl1075.81011MR2098374
  21. JENČA G., Sharp and meager elements in orthocomplete homogeneous effect algebras, Preprint, 2004 (Available from http://www.elf.stuba.sk/'jenca/preprint). Zbl1193.03084MR2601154
  22. JENČA G.-PULMANNOVÁ S., Orthocomplete effect algebras, Proc Amer. Math.Soc 131 (2003), 2663-2671. Zbl1019.03046MR1974321
  23. JENČA G.-PULMANNOVÁ S., Ideals and quotients in lattice ordered effect algebras, Soft Comput. 5 (2001), 376-380. Zbl1004.06009
  24. JENČA G.-RIEČANOVÁ Z., On sharp elements in lattice ordered effect algebras, Busefal 80 (1999), 24-29. (1999) 
  25. KOPKA F.-CHOVANEC F., D-posets, Math. Slovaca 44 (1994), 21-34. (1994) Zbl0789.03048MR1290269
  26. MUNDICI D., Interpretations of A F C * -algebras in Lukasziewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. (1986) MR0819173
  27. MUNDICI D., Tensor products and the Loomis-Sikorski theorem for MV-algebras, Adv. in Appl. Math. 22 (1999), 227-248. (1999) Zbl0926.06004MR1659410
  28. PULMANNOVÁ S., A spectral theorem for a-MV algebras, Kybernetika 41 (2005), 361-374. MR2181424
  29. PULMANNOVÁ S., Spectral resolutions in Dedekind σ -complete -groups, J. Math. Anal. Appl. 309 (2005), 322-335. Zbl1072.06014MR2154046
  30. PULMANNOVÁ S., Commutator-finite D-lattices, Order 21 (2004), 91-105. Zbl1081.06013MR2209320
  31. PTÁK P.-PULMANNOVÁ S., Orthomodular Structures as Quantum Logics, Kluwer Acad. Publ./VEDA, Dordrecht/Bratislava, 1991. (1991) Zbl0743.03039MR1176314
  32. RIEČAN B.-NEUBRUNN T., Integral, Measure and Ordering, Kluwer Acad. Publ./ Ister Science, Dordrecht/Bratislava, 1997. (1997) Zbl0916.28001MR1489521
  33. RIEČANOVÁ Z., Generalization of blocks for D-lattices and lattice ordered effect algebras, Internat. J. Theoret. Phys. 39 (2000), 231-237. Zbl0968.81003MR1762594
  34. RIEČANOVÁ Z., Smearing of states defined on sharp elements onto effect algebras, Internat. J. Theoret. Phys. 41 (2002), 1511-1524. MR1932844
  35. VARADARAJAN V. S., Geometry of Quantum Theory, Springer-Verlag, New York, 1985. (1985) Zbl0581.46061MR0805158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.