Local bounded commutative residuated -monoids
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 395-406
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRachůnek, Jiří, and Šalounová, Dana. "Local bounded commutative residuated $\ell $-monoids." Czechoslovak Mathematical Journal 57.1 (2007): 395-406. <http://eudml.org/doc/31137>.
@article{Rachůnek2007,
abstract = {Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of, e.g., $BL$-algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative $R\ell $-monoids are investigated.},
author = {Rachůnek, Jiří, Šalounová, Dana},
journal = {Czechoslovak Mathematical Journal},
keywords = {residuated $\ell $-monoid; residuated lattice; $BL$-algebra; $MV$-algebra; local $R\ell $-monoid; filter; residuated lattice; BL-algebra; MV-algebra; local R-monoid; filter},
language = {eng},
number = {1},
pages = {395-406},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local bounded commutative residuated $\ell $-monoids},
url = {http://eudml.org/doc/31137},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Rachůnek, Jiří
AU - Šalounová, Dana
TI - Local bounded commutative residuated $\ell $-monoids
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 395
EP - 406
AB - Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of, e.g., $BL$-algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative $R\ell $-monoids are investigated.
LA - eng
KW - residuated $\ell $-monoid; residuated lattice; $BL$-algebra; $MV$-algebra; local $R\ell $-monoid; filter; residuated lattice; BL-algebra; MV-algebra; local R-monoid; filter
UR - http://eudml.org/doc/31137
ER -
References
top- 10.1007/s00012-003-1822-4, Alg. Univ. 50 (2003), 83–106. (2003) MR2026830DOI10.1007/s00012-003-1822-4
- 10.1142/S0218196703001511, Intern. J. Alg. Comp. 13 (2003), 437–461. (2003) MR2022118DOI10.1142/S0218196703001511
- Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. (2000) MR1786097
- New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. (2000) MR1861369
- 10.1007/s00233-005-0545-6, Semigroup Forum. 72 (2006), 191–206. (2006) MR2216089DOI10.1007/s00233-005-0545-6
- 10.1007/s00500-005-0473-0, Soft Comput. 10 (2006), 212–218. (2006) DOI10.1007/s00500-005-0473-0
- Metamathematics of Fuzzy Logic, Kluwer, Amsterdam, 1998. (1998) MR1900263
- A survey of residuated lattices, In: Ordered Algebraic Structures, J. Martinez (ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. (2002) MR2083033
- 10.1023/A:1022801907138, Czechoslovak Math. J. 48 (1998), 365–372. (1998) MR1624268DOI10.1023/A:1022801907138
- -algebras are categorically equivalent to a class of semigroups, Math. Bohemica 123 (1998), 437–441. (1998) MR1667115
- A duality between algebras of basic logic and bounded representable -monoids, Math. Bohemica 126 (2001), 561–569. (2001) MR1970259
- Boolean deductive systems of bounded commutative residuated -monoids, Contrib. Gen. Algebra 16 (2005), 199–207. (2005) MR2166959
- 10.1007/s10587-006-0053-1, Czechoslovak Math. J. 56 (2006), 755–763. (2006) MR2291772DOI10.1007/s10587-006-0053-1
- Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures, Math. Slovaca. 56 (2006), 223–233. (2006) MR2229343
- 10.1007/BF01360284, Math. Ann. 159 (1965), 105–114. (1965) Zbl0138.02104MR0183797DOI10.1007/BF01360284
- 10.1007/BF01361218, Math. Ann. 167 (1966), 71–74. (1966) Zbl0158.02601MR0200364DOI10.1007/BF01361218
- Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg-New York, 1999. (1999) Zbl0940.03029MR1716958
- Local -algebras, Multip. Val. Logic 6 (2001), 229–250. (2001) MR1817445
Citations in EuDML Documents
top- Jiří Rachůnek, Dana Šalounová, Classes of fuzzy filters of residuated lattice ordered monoids
- Jiří Rachůnek, Filip Švrček, Interior and closure operators on bounded commutative residuated l-monoids
- Jiří Rachůnek, Dana Šalounová, Classes of filters in generalizations of commutative fuzzy structures
- Jiří Rachůnek, Dana Šalounová, Modal operators on bounded commutative residuated -monoids
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.