Local bounded commutative residuated -monoids

Jiří Rachůnek; Dana Šalounová

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 395-406
  • ISSN: 0011-4642

Abstract

top
Bounded commutative residuated lattice ordered monoids ( R -monoids) are a common generalization of, e.g., B L -algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative R -monoids are investigated.

How to cite

top

Rachůnek, Jiří, and Šalounová, Dana. "Local bounded commutative residuated $\ell $-monoids." Czechoslovak Mathematical Journal 57.1 (2007): 395-406. <http://eudml.org/doc/31137>.

@article{Rachůnek2007,
abstract = {Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of, e.g., $BL$-algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative $R\ell $-monoids are investigated.},
author = {Rachůnek, Jiří, Šalounová, Dana},
journal = {Czechoslovak Mathematical Journal},
keywords = {residuated $\ell $-monoid; residuated lattice; $BL$-algebra; $MV$-algebra; local $R\ell $-monoid; filter; residuated lattice; BL-algebra; MV-algebra; local R-monoid; filter},
language = {eng},
number = {1},
pages = {395-406},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local bounded commutative residuated $\ell $-monoids},
url = {http://eudml.org/doc/31137},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Rachůnek, Jiří
AU - Šalounová, Dana
TI - Local bounded commutative residuated $\ell $-monoids
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 395
EP - 406
AB - Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of, e.g., $BL$-algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative $R\ell $-monoids are investigated.
LA - eng
KW - residuated $\ell $-monoid; residuated lattice; $BL$-algebra; $MV$-algebra; local $R\ell $-monoid; filter; residuated lattice; BL-algebra; MV-algebra; local R-monoid; filter
UR - http://eudml.org/doc/31137
ER -

References

top
  1. 10.1007/s00012-003-1822-4, Alg. Univ. 50 (2003), 83–106. (2003) MR2026830DOI10.1007/s00012-003-1822-4
  2. 10.1142/S0218196703001511, Intern. J.  Alg. Comp. 13 (2003), 437–461. (2003) MR2022118DOI10.1142/S0218196703001511
  3. Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. (2000) MR1786097
  4. New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. (2000) MR1861369
  5. 10.1007/s00233-005-0545-6, Semigroup Forum. 72 (2006), 191–206. (2006) MR2216089DOI10.1007/s00233-005-0545-6
  6. 10.1007/s00500-005-0473-0, Soft Comput. 10 (2006), 212–218. (2006) DOI10.1007/s00500-005-0473-0
  7. Metamathematics of Fuzzy Logic, Kluwer, Amsterdam, 1998. (1998) MR1900263
  8. A survey of residuated lattices, In: Ordered Algebraic Structures, J.  Martinez (ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. (2002) MR2083033
  9. 10.1023/A:1022801907138, Czechoslovak Math.  J. 48 (1998), 365–372. (1998) MR1624268DOI10.1023/A:1022801907138
  10. M V -algebras are categorically equivalent to a class of  D R 1 ( i ) semigroups, Math. Bohemica 123 (1998), 437–441. (1998) MR1667115
  11. A duality between algebras of basic logic and bounded representable D R -monoids, Math. Bohemica 126 (2001), 561–569. (2001) MR1970259
  12. Boolean deductive systems of bounded commutative residuated -monoids, Contrib. Gen. Algebra 16 (2005), 199–207. (2005) MR2166959
  13. 10.1007/s10587-006-0053-1, Czechoslovak Math.  J. 56 (2006), 755–763. (2006) MR2291772DOI10.1007/s10587-006-0053-1
  14. Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures, Math. Slovaca. 56 (2006), 223–233. (2006) MR2229343
  15. 10.1007/BF01360284, Math. Ann. 159 (1965), 105–114. (1965) Zbl0138.02104MR0183797DOI10.1007/BF01360284
  16. 10.1007/BF01361218, Math. Ann. 167 (1966), 71–74. (1966) Zbl0158.02601MR0200364DOI10.1007/BF01361218
  17. Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg-New York, 1999. (1999) Zbl0940.03029MR1716958
  18. Local B L -algebras, Multip. Val. Logic 6 (2001), 229–250. (2001) MR1817445

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.