Truncatable primes and unavoidable sets of divisors

Artūras Dubickas

Acta Mathematica Universitatis Ostraviensis (2006)

  • Volume: 14, Issue: 1, page 21-25
  • ISSN: 1804-1388

Abstract

top
We are interested whether there is a nonnegative integer u 0 and an infinite sequence of digits u 1 , u 2 , u 3 , in base b such that the numbers u 0 b n + u 1 b n - 1 + + u n - 1 b + u n , where n = 0 , 1 , 2 , , are all prime or at least do not have prime divisors in a finite set of prime numbers S . If any such sequence contains infinitely many elements divisible by at least one prime number p S , then we call the set S unavoidable with respect to b . It was proved earlier that unavoidable sets in base b exist if b { 2 , 3 , 4 , 6 } , and that no unavoidable set exists in base b = 5 . Now, we prove that there are no unavoidable sets in base b 3 if b - 1 is not square-free. In particular, for b = 10 , this implies that, for any finite set of prime numbers { p 1 , , p k } , there is a nonnegative integer u 0 and u 1 , u 2 , { 0 , 1 , , 9 } such that the number u 0 10 n + u 1 10 n - 1 + + u n is not divisible by p 1 , , p k for each integer n 0 .

How to cite

top

Dubickas, Artūras. "Truncatable primes and unavoidable sets of divisors." Acta Mathematica Universitatis Ostraviensis 14.1 (2006): 21-25. <http://eudml.org/doc/35158>.

@article{Dubickas2006,
abstract = {We are interested whether there is a nonnegative integer $u_0$ and an infinite sequence of digits $u_1, u_2, u_3, \dots $ in base $b$ such that the numbers $u_0 b^n+u_1 b^\{n-1\}+\dots + u_\{n-1\} b +u_n,$ where $n=0,1,2, \dots ,$ are all prime or at least do not have prime divisors in a finite set of prime numbers $S.$ If any such sequence contains infinitely many elements divisible by at least one prime number $p \in S,$ then we call the set $S$ unavoidable with respect to $b$. It was proved earlier that unavoidable sets in base $b$ exist if $b \in \lbrace 2,3,4,6\rbrace ,$ and that no unavoidable set exists in base $b=5.$ Now, we prove that there are no unavoidable sets in base $b \geqslant 3$ if $b-1$ is not square-free. In particular, for $b=10,$ this implies that, for any finite set of prime numbers $\lbrace p_1, \dots , p_k\rbrace ,$ there is a nonnegative integer $u_0$ and $u_1, u_2, \dots \in \lbrace 0,1,\dots ,9\rbrace $ such that the number $u_0 10^n + u_1 10^\{n-1\}+\dots +u_\{n\}$ is not divisible by $p_1, \dots , p_k$ for each integer $n \geqslant 0.$},
author = {Dubickas, Artūras},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Prime numbers; truncatable primes; integer expansions; square-free numbers},
language = {eng},
number = {1},
pages = {21-25},
publisher = {University of Ostrava},
title = {Truncatable primes and unavoidable sets of divisors},
url = {http://eudml.org/doc/35158},
volume = {14},
year = {2006},
}

TY - JOUR
AU - Dubickas, Artūras
TI - Truncatable primes and unavoidable sets of divisors
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2006
PB - University of Ostrava
VL - 14
IS - 1
SP - 21
EP - 25
AB - We are interested whether there is a nonnegative integer $u_0$ and an infinite sequence of digits $u_1, u_2, u_3, \dots $ in base $b$ such that the numbers $u_0 b^n+u_1 b^{n-1}+\dots + u_{n-1} b +u_n,$ where $n=0,1,2, \dots ,$ are all prime or at least do not have prime divisors in a finite set of prime numbers $S.$ If any such sequence contains infinitely many elements divisible by at least one prime number $p \in S,$ then we call the set $S$ unavoidable with respect to $b$. It was proved earlier that unavoidable sets in base $b$ exist if $b \in \lbrace 2,3,4,6\rbrace ,$ and that no unavoidable set exists in base $b=5.$ Now, we prove that there are no unavoidable sets in base $b \geqslant 3$ if $b-1$ is not square-free. In particular, for $b=10,$ this implies that, for any finite set of prime numbers $\lbrace p_1, \dots , p_k\rbrace ,$ there is a nonnegative integer $u_0$ and $u_1, u_2, \dots \in \lbrace 0,1,\dots ,9\rbrace $ such that the number $u_0 10^n + u_1 10^{n-1}+\dots +u_{n}$ is not divisible by $p_1, \dots , p_k$ for each integer $n \geqslant 0.$
LA - eng
KW - Prime numbers; truncatable primes; integer expansions; square-free numbers
UR - http://eudml.org/doc/35158
ER -

References

top
  1. Angell I.O., Godwin H.J., 10.1090/S0025-5718-1977-0427213-2, , Math. Comp., 31 (1977), 265–267. (1977) Zbl0347.10009MR0427213DOI10.1090/S0025-5718-1977-0427213-2
  2. Bugeaud Y., Dubickas A., Fractional parts of powers and Sturmian words, , C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 69–74. Zbl1140.11318MR2153958
  3. Dubickas A., 10.1007/s00013-002-8311-4, , Archiv der Math., 79 (2002), 252–257. Zbl1004.11059MR1944949DOI10.1007/s00013-002-8311-4
  4. Dubickas A., 10.1016/j.jnt.2005.07.004, , J. Number Theory, 117 (2006), 222–239. Zbl1097.11035MR2204744DOI10.1016/j.jnt.2005.07.004
  5. Dubickas A. A. Novikas, 10.1007/s00209-005-0827-4, , Math. Zeitschr., 251 (2005), 635–648. MR2190349DOI10.1007/s00209-005-0827-4
  6. Forman W. H.N. Shapiro, 10.1002/cpa.3160200305, , Comm. Pure Appl. Math., 20 (1967), 561–573. (1967) MR0211977DOI10.1002/cpa.3160200305
  7. Guy R.K., Unsolved problems in number theory, , Springer–Verlag, New York, 1994. (1994) Zbl0805.11001MR1299330
  8. Kahan S. S. Weintraub, Left truncatable primes, , J. Recreational Math., 29 (1998), 254–264. (1998) 
  9. Koksma J.F., Ein mengen-theoretischer Satz über Gleichverteilung modulo eins, , Compositio Math., 2 (1935), 250–258. (1935) MR1556918
  10. Weisstein E.W., Truncatable prime, , From MathWorld - A Wolfram Web Resourse, http://mathworld.wolfram.com/TruncatablePrime.html. 
  11. Zaimi T., 10.1007/s00013-006-1560-x, , Archiv der Math., 87 (2006), 124–128. MR2250906DOI10.1007/s00013-006-1560-x

NotesEmbed ?

top

You must be logged in to post comments.