Classes of filters in generalizations of commutative fuzzy structures

Jiří Rachůnek; Dana Šalounová

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2009)

  • Volume: 48, Issue: 1, page 93-107
  • ISSN: 0231-9721

Abstract

top
Bounded commutative residuated lattice ordered monoids ( R -monoids) are a common generalization of 𝐵𝐿 -algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative R -monoids.

How to cite

top

Rachůnek, Jiří, and Šalounová, Dana. "Classes of filters in generalizations of commutative fuzzy structures." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48.1 (2009): 93-107. <http://eudml.org/doc/35184>.

@article{Rachůnek2009,
abstract = {Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit \{BL\}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.},
author = {Rachůnek, Jiří, Šalounová, Dana},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Residuated $\ell $-monoid; deductive system; $\mathit \{BL\}$-algebra; $\mathit \{MV\}$-algebra; Heyting algebra; filter; residuated lattice-ordered monoids; residuated -monoid; deductive system; BL-algebra; MV-algebra; Heyting algebra; filter},
language = {eng},
number = {1},
pages = {93-107},
publisher = {Palacký University Olomouc},
title = {Classes of filters in generalizations of commutative fuzzy structures},
url = {http://eudml.org/doc/35184},
volume = {48},
year = {2009},
}

TY - JOUR
AU - Rachůnek, Jiří
AU - Šalounová, Dana
TI - Classes of filters in generalizations of commutative fuzzy structures
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2009
PB - Palacký University Olomouc
VL - 48
IS - 1
SP - 93
EP - 107
AB - Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.
LA - eng
KW - Residuated $\ell $-monoid; deductive system; $\mathit {BL}$-algebra; $\mathit {MV}$-algebra; Heyting algebra; filter; residuated lattice-ordered monoids; residuated -monoid; deductive system; BL-algebra; MV-algebra; Heyting algebra; filter
UR - http://eudml.org/doc/35184
ER -

References

top
  1. Balbes, R., Dwinger, P., Distributive Lattices, Univ. of Missouri Press, Columbia, Missouri, 1974. (1974) Zbl0321.06012MR0373985
  2. Cignoli, R., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht, 2000. (2000) MR1786097
  3. Dvurečenskij, A., Rachůnek, J., Probabilistic averaging in bounded commutative residuated -monoids, Discrete Mathematics 306 (2006), 1317–1326. (2006) Zbl1105.06011MR2237716
  4. Font, J. M., Rodriguez, A. J., Torrens, A., Wajsberg algebras, Stochastica 8 (1984), 5–31. (1984) Zbl0557.03040MR0780136
  5. Hájek, P., Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht, 1998. (1998) MR1900263
  6. Hájek, P., Basic fuzzy logic and BL-algebras, Soft Comput. 2 (1998), 124–128. (1998) 
  7. Haveshki, M., Saeid, A. B., Eslami, E., Some types of filters in 𝐵𝐿 -algebras, Soft Comput 10 (2006), 657–664. (2006) 
  8. Iorgulescu, A., Classes of BCK algebras – Part I, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33. MR2099263
  9. Iorgulescu, A., Classes of BCK algebras – Part III, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37. MR2099263
  10. Jipsen, P., Tsinakis, C., A survey of residuated lattices, In: J. Martinez, (ed.): Ordered algebraic structures. Kluwer Acad. Publ., Dordrecht, 2002, 19–56. (2002) Zbl1070.06005MR2083033
  11. Kondo, M., Dudek, W. A., Filter theory of 𝐵𝐿 -algebras, Soft Comput. 12 (2008), 419–423. (2008) 
  12. Rachůnek, J., 𝑀𝑉 -algebras are categorically equivalent to a class of D R 1 ( i ) -semigroups, Math. Bohemica 123 (1998), 437–441. (1998) MR1667115
  13. Rachůnek, J., A duality between algebras of basic logic and bounded representable D R -monoids, Math. Bohemica 126 (2001), 561–569. (2001) MR1970259
  14. Rachůnek, J., Šalounová, D., Boolean deductive systems of bounded commutative residuated -monoids, Contrib. Gen. Algebra 16 (2005), 199–208. (2005) Zbl1081.06014
  15. Rachůnek, J., Šalounová, D., Local bounded commutative residuated -monoids, Czechoslovak Math. J. 57 (2007), 395–406. (2007) Zbl1174.06331MR2309973
  16. Rachůnek, J., Slezák, V., Negation in bounded commutative D R -monoids, Czechoslovak Math. J. 56 (2006), 755–763. (2006) Zbl1164.06325
  17. Rachůnek, J., Slezák, V., Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures, Math. Slovaca 56 (2006), 223–233. (2006) Zbl1150.06015MR2229343
  18. Swamy, K. L. N., Dually residuated lattice ordered semigroups III, Math. Ann. 167 (1966), 71–74. (1966) Zbl0158.02601MR0200364
  19. Turunen, E., Boolean deductive systems of B L -algebras, Arch. Math. Logic 40 (2001), 467–473. (2001) Zbl1030.03048MR1854896

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.