Classes of filters in generalizations of commutative fuzzy structures
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2009)
- Volume: 48, Issue: 1, page 93-107
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topRachůnek, Jiří, and Šalounová, Dana. "Classes of filters in generalizations of commutative fuzzy structures." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48.1 (2009): 93-107. <http://eudml.org/doc/35184>.
@article{Rachůnek2009,
abstract = {Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit \{BL\}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.},
author = {Rachůnek, Jiří, Šalounová, Dana},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Residuated $\ell $-monoid; deductive system; $\mathit \{BL\}$-algebra; $\mathit \{MV\}$-algebra; Heyting algebra; filter; residuated lattice-ordered monoids; residuated -monoid; deductive system; BL-algebra; MV-algebra; Heyting algebra; filter},
language = {eng},
number = {1},
pages = {93-107},
publisher = {Palacký University Olomouc},
title = {Classes of filters in generalizations of commutative fuzzy structures},
url = {http://eudml.org/doc/35184},
volume = {48},
year = {2009},
}
TY - JOUR
AU - Rachůnek, Jiří
AU - Šalounová, Dana
TI - Classes of filters in generalizations of commutative fuzzy structures
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2009
PB - Palacký University Olomouc
VL - 48
IS - 1
SP - 93
EP - 107
AB - Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.
LA - eng
KW - Residuated $\ell $-monoid; deductive system; $\mathit {BL}$-algebra; $\mathit {MV}$-algebra; Heyting algebra; filter; residuated lattice-ordered monoids; residuated -monoid; deductive system; BL-algebra; MV-algebra; Heyting algebra; filter
UR - http://eudml.org/doc/35184
ER -
References
top- Balbes, R., Dwinger, P., Distributive Lattices, Univ. of Missouri Press, Columbia, Missouri, 1974. (1974) Zbl0321.06012MR0373985
- Cignoli, R., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht, 2000. (2000) MR1786097
- Dvurečenskij, A., Rachůnek, J., Probabilistic averaging in bounded commutative residuated -monoids, Discrete Mathematics 306 (2006), 1317–1326. (2006) Zbl1105.06011MR2237716
- Font, J. M., Rodriguez, A. J., Torrens, A., Wajsberg algebras, Stochastica 8 (1984), 5–31. (1984) Zbl0557.03040MR0780136
- Hájek, P., Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht, 1998. (1998) MR1900263
- Hájek, P., Basic fuzzy logic and BL-algebras, Soft Comput. 2 (1998), 124–128. (1998)
- Haveshki, M., Saeid, A. B., Eslami, E., Some types of filters in -algebras, Soft Comput 10 (2006), 657–664. (2006)
- Iorgulescu, A., Classes of BCK algebras – Part I, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33. MR2099263
- Iorgulescu, A., Classes of BCK algebras – Part III, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37. MR2099263
- Jipsen, P., Tsinakis, C., A survey of residuated lattices, In: J. Martinez, (ed.): Ordered algebraic structures. Kluwer Acad. Publ., Dordrecht, 2002, 19–56. (2002) Zbl1070.06005MR2083033
- Kondo, M., Dudek, W. A., Filter theory of -algebras, Soft Comput. 12 (2008), 419–423. (2008)
- Rachůnek, J., -algebras are categorically equivalent to a class of -semigroups, Math. Bohemica 123 (1998), 437–441. (1998) MR1667115
- Rachůnek, J., A duality between algebras of basic logic and bounded representable -monoids, Math. Bohemica 126 (2001), 561–569. (2001) MR1970259
- Rachůnek, J., Šalounová, D., Boolean deductive systems of bounded commutative residuated -monoids, Contrib. Gen. Algebra 16 (2005), 199–208. (2005) Zbl1081.06014
- Rachůnek, J., Šalounová, D., Local bounded commutative residuated -monoids, Czechoslovak Math. J. 57 (2007), 395–406. (2007) Zbl1174.06331MR2309973
- Rachůnek, J., Slezák, V., Negation in bounded commutative -monoids, Czechoslovak Math. J. 56 (2006), 755–763. (2006) Zbl1164.06325
- Rachůnek, J., Slezák, V., Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures, Math. Slovaca 56 (2006), 223–233. (2006) Zbl1150.06015MR2229343
- Swamy, K. L. N., Dually residuated lattice ordered semigroups III, Math. Ann. 167 (1966), 71–74. (1966) Zbl0158.02601MR0200364
- Turunen, E., Boolean deductive systems of -algebras, Arch. Math. Logic 40 (2001), 467–473. (2001) Zbl1030.03048MR1854896
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.