Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction
Applications of Mathematics (2010)
- Volume: 55, Issue: 4, page 337-350
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRashid, Abdur, and Akram, Shakaib. "Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction." Applications of Mathematics 55.4 (2010): 337-350. <http://eudml.org/doc/37852>.
@article{Rashid2010,
abstract = {In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement.},
author = {Rashid, Abdur, Akram, Shakaib},
journal = {Applications of Mathematics},
keywords = {long-short wave interaction; Fourier spectral method; energy estimation method; semidiscretization; evolution equations; resonance interaction; Crank-Nicolson Fourier spectral schemes; error estimates; numerical results; long-short wave interaction; Fourier spectral method; energy estimation method; semidiscretization; evolution equations; resonance interaction; Crank-Nicolson Fourier spectral schemes; error estimates; numerical results},
language = {eng},
number = {4},
pages = {337-350},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction},
url = {http://eudml.org/doc/37852},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Rashid, Abdur
AU - Akram, Shakaib
TI - Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 337
EP - 350
AB - In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement.
LA - eng
KW - long-short wave interaction; Fourier spectral method; energy estimation method; semidiscretization; evolution equations; resonance interaction; Crank-Nicolson Fourier spectral schemes; error estimates; numerical results; long-short wave interaction; Fourier spectral method; energy estimation method; semidiscretization; evolution equations; resonance interaction; Crank-Nicolson Fourier spectral schemes; error estimates; numerical results
UR - http://eudml.org/doc/37852
ER -
References
top- Bekiranov, D., Ogawa, T., Ponce, G., On the well-posedness of Benney's interaction equation of short and long waves, Adv. Differ. Equ. 6 (1996), 919-937. (1996) Zbl0861.35104MR1409893
- Benney, D. J., 10.1002/sapm197756181, Studies Appl. Math. 56 (1977), 81-94. (1977) Zbl0358.76011MR0463715DOI10.1002/sapm197756181
- Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., Spectral Methods in Fluid Dynamics, Springer Berlin (1988). (1988) Zbl0658.76001MR0917480
- Funakoshi, M., Oikawa, M., 10.1143/JPSJ.52.1982, J. Phys. Soc. Japan 52 (1983), 1982-1995. (1983) MR0710730DOI10.1143/JPSJ.52.1982
- Kawahara, T., Sugimoto, N., Kakutani, T., 10.1143/JPSJ.39.1379, J. Phys. Soc. Japan 39 (1975), 1379-1386. (1975) DOI10.1143/JPSJ.39.1379
- Lauren, Ph. C., 10.1016/0362-546X(94)00106-R, Nonlinear Anal., Theory Methods Appl. 24 (1995), 509-527. (1995) MR1315692DOI10.1016/0362-546X(94)00106-R
- Ma, Y. C., 10.1002/sapm1978593201, Stud. Appl. Math. 59 (1978), 201-221. (1978) Zbl0399.76028MR0521795DOI10.1002/sapm1978593201
- Nishikawa, K., Hojo, H., Mima, K., Ikezi, H., 10.1103/PhysRevLett.33.148, Phys. Rev. Lett. 33 (1974), 148-151. (1974) DOI10.1103/PhysRevLett.33.148
- Quarteroni, A., Valli, A., Numerical approximation of partial differential equations, Springer Series in Computational Mathematics Springer Berlin (1997). (1997)
- Tsutsumi, M., Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation, Math. Sci. Appl. 2 (1993), 513-528. (1993) Zbl0875.35108MR1370488
- Yadong, S., 10.1016/j.chaos.2005.01.066, Chaos Solitons Fractals 26 (2005), 527-539. (2005) MR2143966DOI10.1016/j.chaos.2005.01.066
- Yajima, N., Oikawa, M., 10.1143/PTP.56.1719, Prog. Theor. Phys. 56 (1974), 1719-1739. (1974) MR0438980DOI10.1143/PTP.56.1719
- Yajima, N., Satsuma, J., 10.1143/PTP.62.370, Prog. Theor. Phys. 62 (1979), 370-37. (1979) DOI10.1143/PTP.62.370
- Zhang, F., Xinmin, X., Pseudospectral method for a class of system of LS wave interaction, Numer. Math. Nanjing 12 (1990), 199-214. (1990) MR1082717
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.