The order -complete vector lattice of AM-compact operators
Belmesnaoui Aqzzouz; Redouane Nouira
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 3, page 827-834
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAqzzouz, Belmesnaoui, and Nouira, Redouane. "The order $\sigma $-complete vector lattice of AM-compact operators." Czechoslovak Mathematical Journal 59.3 (2009): 827-834. <http://eudml.org/doc/37960>.
@article{Aqzzouz2009,
abstract = {We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice $E$ into a Banach lattice $F$ is an order $\sigma $-complete vector lattice.},
author = {Aqzzouz, Belmesnaoui, Nouira, Redouane},
journal = {Czechoslovak Mathematical Journal},
keywords = {AM-compact operator; order continuous norm; discrete vector lattice; AM-compact operator; order continuous norm; discrete vector lattice},
language = {eng},
number = {3},
pages = {827-834},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The order $\sigma $-complete vector lattice of AM-compact operators},
url = {http://eudml.org/doc/37960},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Aqzzouz, Belmesnaoui
AU - Nouira, Redouane
TI - The order $\sigma $-complete vector lattice of AM-compact operators
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 827
EP - 834
AB - We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice $E$ into a Banach lattice $F$ is an order $\sigma $-complete vector lattice.
LA - eng
KW - AM-compact operator; order continuous norm; discrete vector lattice; AM-compact operator; order continuous norm; discrete vector lattice
UR - http://eudml.org/doc/37960
ER -
References
top- Abramovich, Y. A., Wickstead, A. W., 10.1090/S0002-9939-1995-1283534-8, Proc. Amer. Math. Soc. 123 (1995), 3021-3026. (1995) Zbl0860.47023MR1283534DOI10.1090/S0002-9939-1995-1283534-8
- Aliprantis, C. D., Burkinshaw, O., Locally solid Riesz spaces, Academic Press (1978). (1978) Zbl0402.46005MR0493242
- Aliprantis, C. D., Burkinshaw, O., 10.1007/BF01161416, Math. Z. 174 (1980), 289-298. (1980) Zbl0425.46015MR0593826DOI10.1007/BF01161416
- Aliprantis, C. D., Burkinshaw, O., 10.1090/S0002-9939-1981-0627695-X, Proc. Amer. Math. Soc. 83 (1981), 573-578. (1981) Zbl0452.47038MR0627695DOI10.1090/S0002-9939-1981-0627695-X
- Aqzzouz, B., Nouira, R., Les opérateurs précompacts sur les treillis vectoriels localement convexes-solides, Sci. Math. Jpn. 57 (2003), 279-256. (2003) MR1959985
- Chen, Z. L., Wickstead, A. W., 10.1090/S0002-9947-99-02431-9, Trans. Amer. Math. Soc. 352 (1999), 397-412. (1999) MR1641095DOI10.1090/S0002-9947-99-02431-9
- Fremlin, D. H., 10.1017/S0305004100000244, Proc. Cambr. Phil. Soc. 81 (1977), 31-42. (1977) Zbl0344.46019MR0425572DOI10.1017/S0305004100000244
- Krengel, U., 10.1090/S0002-9904-1966-11452-0, Bull. Amer. Math. Soc. 72 (1966), 132-133. (1966) Zbl0135.36302MR0190752DOI10.1090/S0002-9904-1966-11452-0
- Meyer-Nieberg, P., Banach lattices, Universitext. Springer-Verlag, Berlin (1991). (1991) Zbl0743.46015MR1128093
- Robertson, A. P., Robertson, W., Topological vector spaces, 2 ed., Cambridge University Press, London (1973). (1973) Zbl0251.46002MR0350361
- Wickstead, A. W., Dedekind completeness of some lattices of compact operators, Bull. Polish Acad. of Sci. Math. 43 (1995), 297-304. (1995) Zbl0847.47025MR1414786
- Wickstead, A. W., 10.1017/S0305004100074752, Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. (1996) Zbl0872.47018MR1373356DOI10.1017/S0305004100074752
- Zaanen, A. C., Riesz spaces II, North Holland Publishing Company (1983). (1983) Zbl0519.46001MR0704021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.