The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Denjoy type extensions of the Pettis integral”

On Denjoy-Dunford and Denjoy-Pettis integrals

José Gámez, José Mendoza (1998)

Studia Mathematica

Similarity:

The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [ a , b ] c 0 which is not Pettis integrable on any subinterval in [a,b], while ʃ J f belongs to c 0 for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with...

The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem

Mieczysław Cichoń, Ireneusz Kubiaczyk, Sikorska-Nowak, Aneta Sikorska-Nowak, Aneta (2004)

Czechoslovak Mathematical Journal

Similarity:

In this paper we prove an existence theorem for the Cauchy problem x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x 0 , t I α = [ 0 , α ] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of measures of weak noncompactness.

Characterizations of Kurzweil-Henstock-Pettis integrable functions

L. Di Piazza, K. Musiał (2006)

Studia Mathematica

Similarity:

We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.