Displaying similar documents to “On Denjoy type extensions of the Pettis integral”

On Denjoy-Dunford and Denjoy-Pettis integrals

José Gámez, José Mendoza (1998)

Studia Mathematica

Similarity:

The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [ a , b ] c 0 which is not Pettis integrable on any subinterval in [a,b], while ʃ J f belongs to c 0 for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with...

The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem

Mieczysław Cichoń, Ireneusz Kubiaczyk, Sikorska-Nowak, Aneta Sikorska-Nowak, Aneta (2004)

Czechoslovak Mathematical Journal

Similarity:

In this paper we prove an existence theorem for the Cauchy problem x ' ( t ) = f ( t , x ( t ) ) , x ( 0 ) = x 0 , t I α = [ 0 , α ] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of measures of weak noncompactness.

Characterizations of Kurzweil-Henstock-Pettis integrable functions

L. Di Piazza, K. Musiał (2006)

Studia Mathematica

Similarity:

We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.